
[1] https://en.wikipedia.org/wiki/ILIAS
[2] Chris Sangwin, ‘Computer Aided Assessment of Mathematics’, Oxford University Press, 2013.

Developing test questions based on STACK plugin in ILIAS

Dr. Sameer Arabasi

School of Basic Sciences and Humanities

German Jordanian University

Host Partner: Dr. Thomas Risse

Hochschule Bremen

Introduction and Motivation:

ILIAS (Integriertes Lern-, Informations- und Arbeitskooperations-System (German for "Integrated

Learning, Information and Work Cooperation System")) is a web-based open source Learning

Management System (LMS). Learning management systems have become a standard in modern

educational institutions as they offer content management, cooperation, assessment and evaluation [1].

GJU uses a different LMS called MOODLE. STACK (System for Teaching and Assessment using a

Computer algebra Kernel) is a plugin that provides a type of mathematical test questions that

are calculated by a Computer Algebra System (CAS) called MAXIMA. It has the many features

and advantages such as [2]:

 Different question versions are randomly generated.
 There are many different kinds of inputs. Input could be, for example, a mathematical

expression, or a simple true/false selection.
 Mathematical properties of students' answers are established using answer tests within

the CAS Maxima.
 Feedback is assigned on the basis of these properties using a potential response tree.

 Generates outcomes which fulfill the purpose of formative, summative and evaluative
assessment

 Stores data on all attempts at a certain question and/or by a certain student to be
analyzed by the teacher.

 Multi-part mathematical questions are possible: each question may have any number of
inputs and any number of potential response trees.

 Partial credit is possible when an expression only satisfies some of the required
properties.

 Plots can be dynamically generated and included within any part of the question,
including feedback in the form of a plot of the student's expression.

Goals and timeline:

At the beginning of my visit to Hochschule Bremen(HSB), the collaborating partners listed the

following goals to be achieved:

- Get familiar with ILIAS and its features and capabilities. (First week)

- Start authoring quizzes and exams and explore the possibility of having the math

placement test at GJU done via ILIAS. (First week)

- Get familiar with MAXIMA, the computer algebra system in which STACK operates. (First

and Second week)

- Get familiar with STACK and seek a platform where it could be installed and used.

(Second week)

- Develop tests on ILIAS with STACK using different types of questions. (Third and Fourth

week)

- Discuss the possibility of setting up the system on GJU servers. (Second week)

- Discuss the possibility of having questions for different courses at GJU in both English

and German so that the students get familiar with the technical terms in both

languages. (Third and Fourth week)

The vision is to have a weekly or bi-weekly homework assignments for all the first-year courses. These

assignments will contain some questions fully in German. Students can seek help from their instructor

who will be given an English translation of the question or they could ask their German instructors to

translate some of the vocabulary in the question. This way the students will learn their technical

vocabulary early on and gradually in contrast to taking it all at once in advanced German courses. This

goal requires collaborations between GJU and HSB to author the questions in German and help GJU

instructors to understand these questions. GJU instructors could author the questions and ask for a

translation by HSB instructors or German language instructors here at GJU.

ILIAS has been used at HSB for quite some time. They are very familiar with the system and has been

used to give exercises and sample exams. I would like to look into the opportunity of having the math

placement tests at GJU done via ILIAS. Our technical IT team will need some training which could be

provided by Mr. Ralf-Peter Balke of HSB who kindly agreed to help in any technical details needed.

Future work:

This project is to continue after my return to Jordan. Collaboration will continue between Dr. Thomas

Risse and myself. We will discuss the progress during his visit to GJU in November.

Acknowledgements and Concluding remarks:

I would like to thank the DAAD for providing the financial support which made this collaboration

possible through Train-the-Trainer program. I would like also to thank my host Dr. Risse at Hochschule

Bremen for his generous hospitality and volunteering his precious time to work on this project under his

guidance.

Examples:

I will show two examples of questions written in ILIAS using the STACK plugin:

The first one is a Physics question in Mechanics and the second one is a Mathematics question in

Differential Equations.

The first example shows the power of ILIAS and specifically when using STACK and its CAS MAXIAMA in

generating multiple versions of the same question and solving the quadratic equation which represents

the problem for each version.

Here is how the question is programmed in STACK:

Where the question text reads:

“A stone is thrown from the top of a building with an initial velocity of @v_i@ m/s downward. The top

of the building is @y_i@ m above the ground. How much time elapses between the instant of release

and the instant of impact with the ground?

Round your answer to two significant figures!

[[input:ans1]] s. [[validation:ans1]]”.

The student’s answer will be saved in a variable called ans1 which will be compared to the

correct answer calculated by the CAS.

The question variables are:

v_i: rand([5,10,15,20, 30, 40, 50]);

y_i: rand([50, 60, 70, 80, 90, 100])

eqn: -4.9*t^2-v_i*t+y_i=0;

tt: part(solve(eqn,t),2,2);

Where eqn is the quadratic equation describing the problem. This will choose v_i and y_i randomly from

the given values between the brackets.

Uncheck forbid floats in the inputs menu, to allow for non-integer answers:

In the answer test we will use the NumAbsolute which compares the student answer to the correct

answer within the tolerance given in the test option box (here 0.1).

Here is a screenshot of a correct response.

The second example is more elaborate and shows the STACK advantage in designing specific feedbacks

for every student answer and its capability in understanding the student answers when the answer is a

mathematical expression.

Solving a second order ODE:

We will solve a second-order ODE when the roots of the characteristic equation are complex numbers.

Here we will use the potential response tree to provide feedback for the student. The purpose of STACK

is to assess students' answers to mathematical questions, and on the basis of the properties we

establish to assign feedback.

 Formative assessment is to support and inform students' learning. Feedback here could be

qualitative, e.g. written comments tailored to the student's answer and designed to help them

improve their performance on the task.

 Summative assessment is to establish the achievement of the student. In mathematics,

summative feedback is most often quantitative, either a mark or a percentage.

 Evaluative assessment is to measure the effectiveness of the teaching or the assessment of

students. Such assessments could have quality enhancement or quality audit functions

Here is the question and the correct responses. The instructor could also insert a figure to show the

student how the answer looks like when plotted.

Question variables:

l1:2+(-1)^rand(1)*rand(6);

 l2:l1+(-1)^rand(1)*(1+rand(4));

 c1:1*(-l1+l2);

 c2: l1*l2;

 q:'diff(y(t),t,2)+c1*'diff(y(t),t)+c2*y(t);

che: l^2+c1*l+c2;

lamdas: solve(che,l);

g:realpart(part(lamdas,1,2));

o:abs(imagpart(part(lamdas,1,2)));

ta:%e^(g*t)*(cos(o*t)+sin(o*t));

Potential Response Tree:

The potential response tree is the algorithm which establishes the mathematical properties of the

student's answer and assigns outcomes.

Each potential response tree can set Maxima's level of simplification. Before the tree is traversed the

feedback variables are evaluated. The feedback variables may depend on the values of the question

variables and the inputs. The values of these variables are available to the answer tests and all CASText

fields within the tree, for example the feedback could be built using these variables.

A potential response tree consists of one or more nodes that are linked together. In each node two

expressions are compared using a specified answer tests, and the result is either true or false. A

corresponding branch of the tree can do the following:

 Adjust the score, (positive or negative).

 Add written feedback specifically for the student

 Generate an "answer note", used by the teacher for evaluative assessment

 Nominate the next node, or end the process.

The outcomes are:

 The raw score

 The penalty for this attempt

 Feedback to the student

 An Answer Note

The potential response tree itself is expected to return a numerical raw score between 0 and 1. This

number is multiplied by the question value before being returned to the student as feedback or

recorded in the database [2].

In our last example, we have four parts and hence four potential response trees. Here is how they were

programmed.

First Tree:

Feedback variables:

p:ev(q,y(t)=ans1,nouns,fullratsimp);

 l:setify(listofvars(ans1));

 l:setdifference(l,set(t));

 l:listify(l);

 lv:length(l);

 b1:ev(ans1,t=0,fullratsimp);

 b2:ev(ans1,t=1,fullratsimp);

 m:if not(b2=0) then fullratsimp(b1/b2) else 0;

 m:float(m);

lam1:diff(part(ans1,1),t)/part(ans1,1);

lam2: diff(part(ans1,2),t)/part(ans1,2);

ss: is (lam1 = lam2)

http://stack.bham.ac.uk/moodle/question/type/stack/doc/doc.php/CAS/Simplification.md
http://stack.bham.ac.uk/moodle/question/type/stack/doc/doc.php/Authoring/KeyVals.md#Feedback_variables
http://stack.bham.ac.uk/moodle/question/type/stack/doc/doc.php/Authoring/KeyVals.md#Question_variables
http://stack.bham.ac.uk/moodle/question/type/stack/doc/doc.php/Authoring/KeyVals.md#Question_variables
http://stack.bham.ac.uk/moodle/question/type/stack/doc/doc.php/Authoring/Inputs.md
http://stack.bham.ac.uk/moodle/question/type/stack/doc/doc.php/Authoring/Answer_tests.md
http://stack.bham.ac.uk/moodle/question/type/stack/doc/doc.php/Authoring/CASText.md
http://stack.bham.ac.uk/moodle/question/type/stack/doc/doc.php/Authoring/Answer_tests.md
http://stack.bham.ac.uk/moodle/question/type/stack/doc/doc.php/Authoring/Potential_response_trees.md#Answer_note
http://stack.bham.ac.uk/moodle/question/type/stack/doc/doc.php/Authoring/Feedback.md
http://stack.bham.ac.uk/moodle/question/type/stack/doc/doc.php/Authoring/Feedback.md

First node:

Second node:

Third node:

Fourth node:

The second Tree:

Feedback variables:

 che: l^2+c1*l+c2;

 cc: is (ans2 = che)

The third and fourth trees are also a one-node tree to compare outputs.

