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An Applied Question

How can we estimate the thermal conductivity
from temperature measurements?
For a model-based parameter estimation of thermal

conductivity k = k(x) distributed in a smooth spati-

al domain Ω ⊂ Rd, let us assume that temperature

u = u(x) satisfies the stationary heat equation

− div (k∇u) = f in Ω

u = 0 on ∂Ω

}
(*)

for a known heat source f = f(x). Given temperature

measurements ŷ ∈ RN in N parts of Ω, the task is to

find k̂ such that the corresponding solution û of (*)
has in these N parts of Ω averaged projected values

Pû such that ∥Pû− ŷ∥ becomes minimal.

However, this minimization problem is ill-posed, as

k is not uniquely determined by (*) and N averaged

values of u. Moreover, even if u is known everywhere

in Ω so that (*) can be considered as first order

hyperbolic equation for k, then k is still not unique

as it is not prescribed along some non-characteristic

hypersurface in Ω.

Therefore, in correspondence with the physical fact

that k often is piecewise constant due to sharp in-

terfaces between subregions of Ω filled by materials

with varying thermal conductivity, i.e. ∇k is spar-
se, we regularize the minimization problem by the

total variation TV(k) :=
∫
Ω∇k of k and obtain …

The Corresponding Regularized Optimization Problem

Given f ∈ L2(Ω), 0 < r < R < +∞, γ > 0, a continuous linear operator P : W1,2
0 (Ω) → RN and ŷ ∈ RN, find

k ∈ BV(Ω) := {k ∈ L1(Ω) |∇k is a finite Radon measure} such that

J(k) := ∥Pu− ŷ∥RN + γTV(k) = min!

s.t.− div (k∇u) = f in Ω , u = 0 on ∂Ω , r ≤ k ≤ R in Ω .
(**)

Colonius and Kunisch [1] wrote one of the first articles about a similar regularized parameter estimation

problem, but there instead of BV(Ω) and total variation TV a space of continuous functions and a regularizing

norm is used which guarantee existence of strong solutions u ∈ W2,2(Ω) of (*) (and also newer articles

about such optimization problems always seem to assume existence of strong solutions). However, already

for dimension d = 2 there exist symmetric matrix-valued coefficients k ∈ W1,d(Ω) ̸⊂ VMO(Ω) satisfying a

bound 0 < r ≤ k ≤ R < +∞ such that the weak solution u ∈ W1,2
0 (Ω) of (*) satisfies u ∈ W2,p(Ω) for

p < 2, but u ̸∈ W2,2(Ω) (see Cruz-Uribe, Moen and Rodney [2] for a discussion). In the case of less regular

non-continuous coefficients, the situation even becomes worse, and in the case of elliptic systems instead

of scalar elliptic equations only partial regularity is available. However, to prove existence of minimizers of

(**) you need at least higher integrability of weak solutions u ∈ W1,2
0 (Ω) of (*) and have to overcome some

mathematical difficulties.

Mathematical Difficulties

1. BV(Ω) is not a separable reflexive Banach space,

but has a separable predual. Moreover,

BV(Ω) ⊂ Lq(Ω) continuously (resp. compactly)

for 1 ≤ q ≤ d
d−1 (1 ≤ q < d

d−1), but

BV(Ω) ̸⊂ C(Ω).

2. For a minimizing sequence kn, after having

obtained subsequences kn
∗
⇀ k̂ in BV(Ω) and

ukn ⇀ û in W1,2
0 (Ω) ∩ W1,s(Ω), the estimate∫

Ω

(kn − k̂)∇u · ∇v dx ≤ ∥kn − k∥Lq∥∇u∥Ls∥∇v∥Lr

with s > 2, r > 2, sufficiently large is needed to

identify the limit û with the solution of (*) to
coefficients k̂, i.e. higher integrability of weak

solutions u ∈ W1,2
0 (Ω) of (*) has to be known a

priori.

Generalizations and Open Questions
In [3] we discuss existence and stability for abs-

tract minimization problems J(k) = min! and gene-

ral elliptic systems Aku = f. It seems to be an open

question how these results can be generalized to

nonlinear operators Ak.

A higher integrability result

To obtain higher integrability of ∇u, in [3] we estimate the change of the norm ∥k∇u∥q while q increases

from 2 to a sufficiently large value s > 2: Define ⟨Aku, v⟩ :=
∫
Ω k∇u · ∇v dx, then

d
dq

∥k∇u∥q +
1

q
1

∥k∇u∥q−1
q

⟨Aku− f, div((k∇u)q−1)⟩

=
1

q2
∥k∇u∥q

(∫
Ω

|k∇u|q

∥k∇u∥qq
ln
(

|k∇u|q

∥k∇u∥qq

)
dx− 2

∥k∇u∥qq

∫
Ω

(q̃− 1)|∇((k∇u)
q
2)|2 dx

)
+

1

q
1

∥k∇u∥q−1
q

⟨∇f, (k∇u)q−1⟩

Thus, by substituting w := |k∇u|
q
2 and estimating −(q− 1) ≤ −(q̃− 1), the term in brackets is identical with

the left hand side of Gagliardo-Nirenberg inequalities in their parameteric form∫
|w|2

∥w∥22
ln
(

|w|2

∥w∥22

)
dx− µ

∥∇w∥22
∥w∥22

≤ 2

2− 22/2∗
ln

(
2C2n,2,2

e(2− 22/2∗)µ

)
for µ := 2. Hence, we obtain

d
dq

∥k∇u∥q ≤
1

q2
∥k∇u∥q

n
2
ln

(
nC2n,2,2
4e

)
+

1

q
∥∇f∥q

and from this for every q ≤ ∞ a bound of k∇u in Lq by the Lq-norm of ∇f. Finally, we use the lower bound

r ≤ k to obtain a bound of ∇u in Lq.

Numerical Experiments

While the higher integrability result is more inte-

resting for the case of systems and matrix-valued k,

for applications already the scalar case in dimensi-

on d = 2 is useful. Here we consider Ω := B1(0),

f := 10, r = 1
2, R := 2, γ := 10−4, and recover the

coefficients k in 2b on the mesh 1 from measure-

ments ŷ of the solution u in 3a to the coefficients

k in 2a at all triangle midpoints by the MATLAB

code below, which needs 97 iterations of FMINCONs

active-set algorithm (approx. 1 min) and has errors

merely near the jump set. 1 Mesh with 549 finite elements

2 a Original coefficients (left 1
2, right 2) b Estimated coefficients c Pointwise error

3 a Solution to original coefficients b Solution to estimated coefficients c Pointwise error

1 % geometry and mesh initialization
2 geom = 'circleg'; bgeom = 'circleb2';
3 [p,e,t] = initmesh(geom ,'Hmax',0.2);
4 % finite element method
5 a = 0; f = 10;
6 i=t(1,:); j=t(2,:); k=t(3,:);
7 x=(p(1,i)+p(1,j)+p(1,k))/3; y=(p(2,i)+p(2,j)+p(2,k))

/3;
8 c=original(x,y)
9 [K,F,B,UD]=assempde(bgeom ,p,e,t,c,a,f);

10 U=B*(K\F)+UD;
11 % optimization of the coefficients c resp. C
12 objfunred = @(CN) objfun(KN,bgeom ,p,e,t,a,f,U)
13 C=pdeprtni(p,t,c);
14 COPT=fmincon(objfunred ,ones(size(C)) ,[],[],[],[],1/2*

ones(size(C)),2*ones(size(C)),[],options);
15 [K,F,B,UD]=assempde(bgeom ,p,e,t,pdeintrp(p,t,COPT),a,

f);
16 UOPT=B*(K\F)+UD;
17 % plotting
18 figure( ... ), pdesurf(p,t, ...), grid on;
19
20 function z = objfun(CN,bgeom ,p,e,t,a,f,U)
21 [K,F,B,UD]=assempde(bgeom ,p,e,t,pdeintrp(p,t,CN),a,

f);
22 UN=B*(K\F)+UD;
23 CGRAD = pdegrad(p,t,CN); TV = norm(CGRAD ,1);
24 z = norm(UN-U,2) + TV/1e+04;
25 end
26
27 function c=original(x,y)
28 c = 1/2*(x<0) + 2*(x>0);
29 end
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