

# **German Jordanian University**

# **School of Applied Technical Sciences**

# Department of Mechanical and Maintenance Engineering

# Bachelor of Science in Mechanical and Maintenance Engineering

**Study Plan** 

# 2014

## I. Program Objectives

The objective of the Mechanical and Maintenance Engineering program at GJU is to prepare graduated for careers in industry or further studies in Mechanical or Maintenance Engineering and related disciplines.

Mechanical and Maintenance Engineering graduates will have:

- Ample knowledge in the theory, principles, tools and processes in the field of mechanical and maintenance engineering including; analysis, management, quality assurance, and reliability.
- A strong background in the design and the structure of mechanical, thermal, and power systems.
- A strong practical experience obtained through hands-on learning methodologies.
- Effective communication, interpersonal, and critical thinking skills, a spirit of curiosity and conduct reflecting professionalism and engineering ethics.

## II. Learning Outcomes

Upon completion of the Mechanical and Maintenance Engineering Program, graduates will be able to achieve the following outcomes:

- a) The ability to understand and analyze many of the common mechanical systems such as HVAC systems, hydraulic and pneumatic systems, power plants and many more.
- b) The ability to apply maintenance engineering principles to analyze and manage the maintenance tasks for different mechanical systems.
- c) The ability to implement reliability and quality control programs in the different fields of maintenance systems.
- d) The ability to participate productively on maintenance project teams involving participants from different specializations.
- e) The ability to design and analyze different mechanical systems including the design and fabrication of mechanical replacement components.
- f) Effective communication skills through oral and written reports and software documentation evaluated by both peers and managers.
- g) The ability to elicit, analyze and specify maintenance requirements through productive working relationships with project stakeholders.
- h) The knowledge required to understand the need for and the ability to perform in lifelong learning.

## III. Assessment of Learning Outcomes

a) The ability to understand and analyze many of the common mechanical systems such as HVAC systems, hydraulic and pneumatic systems, power plants and many more.

## **Assessment Methods:**

- Performance in applied mechanical engineering courses and Capstone projects.
- Employer surveys.
- Students' evaluation.
- Students' portfolios.

b) The ability to apply maintenance engineering principles to analyze and manage the maintenance tasks for different mechanical systems.

## **Assessment Methods:**

- Exams.
- Performance in laboratory work.
- Capstone projects.
- Employer surveys.
- Students' evaluation.
- c) The ability to implement reliability and quality control programs in the different fields of maintenance systems.

## **Assessment Methods:**

- Performance in applied maintenance engineering courses.
- Employer surveys
- Students' evaluation.
- Students' portfolios.
- d) The ability to participate productively on maintenance project teams involving participants from different specializations.

## **Assessment Methods:**

- Participation in teams of Capstone projects.
- Final year project.
- Employer surveys.
- e) The ability to design and analyze different mechanical systems including the design and fabrication of mechanical replacement components.

## **Assessment Methods:**

- Performance in Machine Design and Manufacturing Processes courses.
- Final year project.
- Employer surveys.
- f) Effective communication skills through oral and written reports and software documentation evaluated by both peers and managers.

## **Assessment Methods:**

- Project reports and project presentations.
- Final year project.
- Employer surveys.

g) The ability to elicit, analyze and specify maintenance requirements through productive working relationships with project stakeholders.

## **Assessment Methods:**

- Project reports and project presentations.
- Final year project.
- Employer surveys.
- h) The knowledge required to understand the need for and the ability to perform in lifelong learning.

## **Assessment Methods:**

- Employer surveys.

## IV. Framework for B.Sc. Degree (Semester Credits)

|                         | Credit Hours |          |       |  |
|-------------------------|--------------|----------|-------|--|
| Classification          | Compulsory   | Elective | Total |  |
| University Requirements | 21           | 6        | 27    |  |
| School Requirements     | 37           | -        | 37    |  |
| Program Requirements    | 103          | 12       | 115   |  |
| Total                   | 161          | 18       | 179   |  |

## 1. University Requirements: (27 credit hours)

## 1.1. Compulsory: (21 credit hours)

| Course              |                         | Credit | Contact Hours |     |              |
|---------------------|-------------------------|--------|---------------|-----|--------------|
| ID                  | Course Title            | Hours  | Lecture       | Lab | Prerequisite |
|                     | -                       | -      |               |     |              |
| ARB099              | Arabic 99ª              | 0      | 3             | -   | -            |
| ARB100 <sup>1</sup> | Arabic                  | 3      | 3             | -   | ARB099       |
| ENGL098             | English I <sup>1</sup>  | 0      | 3             | -   | -            |
| ENGL099             | English II <sup>1</sup> | 0      | 3             | -   | ENGL098      |
| ENGL101             | English III             | 1      | 3             | -   | ENGL099      |
| ENGL102             | English IV              | 1      | 3             | -   | ENGL101      |
| ENGL201             | English V               | 2      | 3             | -   | ENGL102      |
| ENGL202             | English VI              | 2      | 3             | -   | ENGL201      |
| GERL101             | German I                | 3      | 9             | -   | -            |
| GERL102             | German II               | 3      | 9             | -   | GERL101      |
| MILS100             | Military Science        | 3      | 3             | -   | -            |
| NE101               | National Education      | 3      | 3             | -   | -            |
|                     | Total                   | 21     | 48            | -   |              |

## **1.2.** Elective: (6 Credit Hours) (two courses out of the following)

| Course  |                                         | Credit | Credit Contact Hours |     |              |
|---------|-----------------------------------------|--------|----------------------|-----|--------------|
| ID      | Course Title                            | Hours  | Lecture              | Lab | Prerequisite |
| DES101  | Arts' Appreciation                      | 3      | 3                    | -   | -            |
| EI101   | Leadership and Emotional Intelligence   | 3      | 3                    | -   | -            |
| IC101   | Intercultural Communications            | 3      | 3                    | -   | -            |
| SE301   | Social Entrepreneurship and Enterprises | 3      | 3                    | -   | -            |
| SFTS101 | Soft Skills                             | 3      | 3                    | -   | -            |
| TW303   | Technical and Workplace Writing         | 3      | 3                    | -   | -            |
| BE302   | Business Entrepreneurship               | 3      | 3                    | -   | -            |
| PE101   | Sports and Health                       | 3      | 3                    | -   | -            |
|         | Total                                   | 6      | 6                    | -   |              |

<sup>&</sup>lt;sup>a</sup> Not required for students who pass placement test

## 2. School Requirements: (37 credit hours)

|           |                                       | Credit | Contact Hours |     |                    |
|-----------|---------------------------------------|--------|---------------|-----|--------------------|
| Course ID | Course Title                          | Hours  | Lecture       | Lab | Prerequisite       |
| CS116     | Computing Fundamentals                | 3      | 3             | -   | -                  |
| CS1160    | Computing Fundamentals Lab            | 1      | -             | 3   | Corequisite: CS116 |
| ENE211    | Electrical Circuits I                 | 3      | 3             | -   | PHYS104            |
| ENE213    | Electrical Circuits Lab               | 1      | -             | 3   | ENE211             |
| GERL201   | German III                            | 3      | 6             | -   | GERL102            |
| GERL202   | German IV                             | 3      | 6             | -   | GERL201            |
| IE121     | Workshop                              | 1      | -             | 3   | -                  |
| MATH99    | Pre-Math <sup>a</sup>                 | 0      | 3             | -   | -                  |
| MATH101   | Calculus I                            | 3      | 3             | -   | MATH99             |
| MATH102   | Calculus II                           | 3      | 3             | -   | MATH101            |
| MATH203   | Applied Mathematics for               | 3      | 3             | -   | MATH102            |
|           | Engineers                             |        |               |     |                    |
| MATH205   | Differential Equations                | 3      | 3             | -   | MATH102            |
| ME111     | Computer Aided Engineering<br>Drawing | 3      | 2             | 3   | CS116, CS1160      |
| PHYS103   | Physics I                             | 3      | 3             | -   | -                  |
| PHYS104   | Physics II                            | 3      | 3             | -   | PHYS103            |
| PHYS106   | General Physics Lab                   | 1      | -             | 3   | PHYS103            |
|           |                                       |        |               |     | Corequisite:       |
|           |                                       |        |               |     | PHYS104            |
|           | Total                                 | 37     | 41            | 15  |                    |

| Course  |                                         | Credit | Contac  | t Hours |                            |
|---------|-----------------------------------------|--------|---------|---------|----------------------------|
| ID      | Course Title                            | Hours  | Lecture | Lab     | Prerequisite               |
| TME212  | Statics                                 | 3      | 3       | -       | PHYS103, MATH102           |
| TME213  | Mechanics of Materials                  | 3      | 3       | -       | TME212                     |
| TME214  | Dynamics and Vibrations                 | 3      | 3       | -       | TME212                     |
| TME221  | Thermodynamics                          | 3      | 3       | -       | MATH102                    |
| TME222  | Fluid Mechanics                         | 3      | 3       | -       | MATH205                    |
| TME323  | Thermofluids Lab                        | 1      | -       | 3       | TME222, ENE321             |
| TME324  | Power and Refrigeration Cycles          | 3      | 3       | -       | TME221                     |
| TME331  | Theory of Machines                      | 3      | 3       | -       | TME214, ME111, MATH203     |
| TME332  | Machine Design                          | 4      | 3       | 3       | TME213, IE325, ME111       |
| TME351  | Spare Parts and Storage                 | 3      | 3       | -       | IE371                      |
|         | Management                              |        |         |         |                            |
| TME391  | Field Training                          | 0      | -       | 160 hr  | Dept. Approval             |
| TME491  | International Internship                | 12     | -       | 20      | TME391, TME324, TME332,    |
|         |                                         |        |         | weeks   | ENE321                     |
| TME515  | Mechanical Vibrations                   | 3      | 3       | -       | TME214, MATH205            |
| TME520  | Applied Thermal Systems Lab             | 1      | -       | 3       | TME324, ENE321             |
| TME522  | HVAC                                    | 3      | 3       | -       | ENE321, IME324             |
| TME523  | Internal Combustion Engines             | 3      | 3       | -       | TME324                     |
| TME552  | Management of Maintenance<br>Systems    | 3      | 3       | -       | TME351                     |
| TME538  | Applied Machine Design                  | 2      | 2       | 0       | TME332                     |
| TME539  | Computer-aided Design                   | 1      | 0       | 3       | Corequisite: TME538        |
| TME553  | Reliability and Quality Control         | 3      | 3       | -       | IE211                      |
| TME591  | Graduation Project I                    | 3      | -       | 9       | TME491, min 124 CH         |
| TME592  | Graduation Project II                   | 3      | -       | 9       | TME591                     |
| IE211   | Probability and Statistics              | 3      | 3       | -       | MATH102                    |
| IE223   | Materials Science                       | 3      | 3       | -       | IE121                      |
| IE224   | Materials and Mechanics Lab             | 1      | -       | 3       | IE223, Corequisite: TME213 |
| IE325   | Manufacturing Processes                 | 4      | 3       | 3       | IE121, TME213              |
| IE371   | Engineering Economics                   | 3      | 3       | -       | MATH205                    |
| ME344   | Control Systems I                       | 3      | 3       | -       | TME214, ENE211, MATH205    |
| ME345   | Vibration and Control Lab               | 1      | -       | 3       | ME344                      |
| ME346   | Instrumentation and Measurements        | 2      | 2       | -       | ENE211, MATH205            |
| ME347   | Instrumentation and Measurements<br>Lab | 1      | -       | 3       | Corequisite: ME346         |
| ME534   | Electrical Machines and Control         | 3      | 3       | -       | ENE211                     |
| ME535   | Electrical Machines and Control Lab     | 1      | -       | 3       | ME534                      |
| BM371   | Numerical Methods for Engineers         | 3      | 2       | 3       | CS116, MATH203, MATH205    |
| ENE321  | Heat Transfer                           | 3      | 3       | -       | TME221, TME222, MATH205    |
| GERL301 | German V                                | 3      | 9       | -       | GERL202                    |
| GERL302 | German VI                               | 3      | 9       | -       | GERL301                    |
| -       | Total                                   | 103    | 87      | 48      |                            |

# Program Requirements (115 credit hours) 3.1. Program Requirements (Compulsory): (103 credit hours)

## 3.2. Program Requirements (Electives<sup>b</sup>): (12 credit hours)

A minimum of 12 credit hours of engineering coursework are required. This list is considered to be open for modifications on the base of the decision of the school council before registration.

|           |                                              | Credit | Contact Hours |     |                                |
|-----------|----------------------------------------------|--------|---------------|-----|--------------------------------|
| Course ID | Course Title                                 | Hours  | Lecture       | Lab | Prerequisite                   |
| TME512    | Finite Element Method                        | 3      | 3             | -   | TME332                         |
| TME513    | Multi-Body Dynamics                          | 3      | 3             | -   | TME331                         |
| TME514    | Machine Dynamics                             | 3      | 3             | -   | TME331                         |
| TME525    | Advanced Heat Transfer                       | 3      | 3             | -   | ENE321                         |
| TME527    | Turbomachinery                               | 3      | 3             | -   | TME222                         |
| TME529    | Renewable Energy                             | 3      | 3             | -   | TME324                         |
| TME537    | Reverse Engineering                          | 3      | 3             | -   | TME332                         |
| TME5422   | Automotive Maintenance                       | 3      | 3             | -   | TME332                         |
| TME545    | Aircraft Maintenance                         | 3      | 3             | -   | TME332                         |
| TME546    | Building Maintenance                         | 3      | 3             | -   | TME324                         |
| TME551    | Safety and Loss prevention                   | 3      | 3             | -   | IE325                          |
| TME554    | Logistics Engineering                        | 3      | 3             | -   | TME351                         |
| TME555    | Maintenance Costing                          | 3      | 3             | -   | TME351                         |
| TME557    | Modern Maintenance Management<br>Systems     | 3      | 3             | -   | TME351                         |
| TME596    | Special Topics I                             | 1      | 1             | -   | Dept. Approval                 |
| TME597    | Special Topics II                            | 2      | 2             | -   | Dept. Approval                 |
| TME598    | Special Topics in Mechanical<br>Engineering  | 3      | 3             | -   | Dept. Approval                 |
| TME599    | Special Topics in Maintenance<br>Engineering | 3      | 3             | -   | Dept. Approval                 |
| MGT52     | Project Management                           | 3      | 3             | -   | IE371                          |
| IE541     | Industrial Automation                        | 4      | 3             | 3   | ME344                          |
| IE585     | Human Resource Management                    | 3      | 3             | -   | IE371                          |
| ME522     | Hydraulics and Pneumatics                    | 3      | 2             | 3   | TME222                         |
| ME548     | Control Systems II                           | 3      | 3             | -   | ME344                          |
| ME551     | Robotics                                     | 3      | 3             | -   | ME344, TME331                  |
| ME582     | Micro-Electromechanical Systems              | 3      | 3             | -   | ENE211, TME213,<br>TME222      |
| ENE432    | Power Plants Engineering                     | 3      | 3             | -   | TME222, ENE321                 |
| ENE537    | Energy Efficiency, management<br>and laws    | 3      | 3             | -   | Corequisite:<br>TME522, TME523 |

<sup>&</sup>lt;sup>b</sup> TME491 International Internship is prerequisite for all elective courses

## V. Study Plan<sup>c</sup> Guide for the Bachelor Degree in Mechanical and Maintenance Engineering

| First Year |                            |     |               |             |
|------------|----------------------------|-----|---------------|-------------|
|            | First Semester             | •   |               |             |
| Course ID  | Course Title               | Cr. | Prerequisites | Corequisite |
|            |                            | Hr. |               |             |
| ARB100     | Arabic                     | 3   | ARB099        | -           |
| CS116      | Computing Fundamentals     | 3   | -             | -           |
| CS1160     | Computing Fundamentals Lab | 1   | -             | CS116       |
| ENGL101    | English III                | 1   | ENGL099       | -           |
| GERL101    | German I                   | 3   | -             | -           |
| IE121      | Engineering Workshop       | 1   | -             | -           |
| MATH101    | Calculus I                 | 3   | -             | -           |
| PHYS103    | Physics I                  | 3   | -             | -           |
|            | Total                      | 18  |               |             |

| First Year |                                        |     |               |             |
|------------|----------------------------------------|-----|---------------|-------------|
|            | Second Semeste                         | er  |               |             |
| Course ID  | Course Title                           | Cr. | Prerequisites | Corequisite |
|            |                                        | Hr. |               |             |
| ME111      | Computer Aided Engineering Drawing     | 3   | CS116,CS1160  | -           |
| ME1110     | Computer Aided Engineering Drawing Lab | 0   | -             | ME111       |
| ENGL102    | English IV                             | 1   | ENGL 101      | -           |
| GERL102    | German II                              | 3   | GERL101       | -           |
| MATH102    | Calculus II                            | 3   | MATH101       | -           |
| NE101      | National Education                     | 3   | -             | -           |
| MILS100    | Military Science                       | 3   | -             | -           |
| PHYS104    | Physics II                             | 3   | PHYS103       | -           |
| PHYS106    | General Physics Lab                    | 1   | -             | PHYS104     |
|            | Total                                  | 20  |               |             |

<sup>&</sup>lt;sup>c</sup> The following study plan guide assumes having passed all placement tests

| Second Year |                                   |     |               |             |
|-------------|-----------------------------------|-----|---------------|-------------|
|             | First Semest                      | er  |               |             |
| Course ID   | Course Title                      | Cr. | Prerequisites | Corequisite |
|             |                                   | Hr. |               |             |
| TME212      | Statics                           | 3   | MATH102,      | -           |
|             |                                   |     | PHYS103       |             |
| TME221      | Thermodynamics                    | 3   | MATH102       | -           |
| IE223       | Material Science                  | 3   | IE121         | -           |
| ENGL201     | English V                         | 2   | ENGL102       | -           |
| GERL201     | German III                        | 3   | GERL102       | -           |
| MATH203     | Applied Mathematics for Engineers | 3   | MATH102       | -           |
| MATH205     | Differential Equations            | 3   | MATH102       | -           |
|             | Tota                              | 20  |               |             |

| Second Year |                                    |             |          |        |
|-------------|------------------------------------|-------------|----------|--------|
|             | Second Semeste                     | er          |          |        |
| Course ID   | Course Title                       | Corequisite |          |        |
|             |                                    | Hr.         |          |        |
| TME213      | Mechanics of Materials             | 3           | TME 212  | -      |
| TME214      | Dynamics and Vibration             | 3           | TME 212  | -      |
| TME222      | Fluid Mechanics                    | 3           | MATH205  | -      |
| IE224       | Material Science and Mechanics Lab | 1           | IE223    | TME213 |
| ENE211      | Electrical Circuits I              | 3           | PHYS106  | -      |
| ENGL202     | English VI                         | 2           | ENGL201  | -      |
| GERL202     | German IV                          | 3           | GERL 201 | -      |
|             | Total                              | 10          |          |        |

Total 18

| Third Year |                                     |     |               |             |  |
|------------|-------------------------------------|-----|---------------|-------------|--|
|            | First Semester                      |     |               |             |  |
| Course ID  | Course Title                        | Cr. | Prerequisites | Corequisite |  |
|            |                                     | Hr. |               |             |  |
| ENE321     | Heat Transfer                       | 3   | TME221,       | -           |  |
|            |                                     |     | TME222        |             |  |
|            |                                     |     | MATH205       |             |  |
| TME324     | Power and Refrigeration Cycles      | 3   | TME221        | -           |  |
| TME331     | Theory of Machines                  | 3   | TME214,       | -           |  |
|            |                                     |     | ME111,        |             |  |
|            |                                     |     | MATH203,      |             |  |
| BM371      | Numerical Methods for Engineers     | 3   | CS116,        | -           |  |
|            |                                     |     | MATH203,      |             |  |
|            |                                     |     | MATH205       |             |  |
| BM3710     | Numerical Methods for Engineers Lab | 0   | -             | BM371       |  |
| IE325      | Manufacturing Processes             | 4   | IE121, TME213 | -           |  |
| IE3250     | Manufacturing Processes Lab         | 0   | -             | IE325       |  |
| GERL301    | German V                            | 3   | GERL202       | -           |  |
| ENE213     | Electrical Circuits Lab             | 1   | -             | ENE211      |  |
|            | Total 20                            |     |               |             |  |

|           | Third Year                       |     |                |             |  |
|-----------|----------------------------------|-----|----------------|-------------|--|
|           | Second Semeste                   | er  |                |             |  |
| Course ID | Course Title                     | Cr. | Prerequisites  | Corequisite |  |
|           |                                  | Hr. |                |             |  |
| TME323    | Thermofluids Lab                 | 1   | TME222,        | -           |  |
|           |                                  |     | ENE321         |             |  |
| TME332    | Machine Design                   | 4   | TME213, IE325, | -           |  |
|           |                                  |     | ME111          |             |  |
| TME3320   | Machine Design Lab               | 0   | -              | TME332      |  |
| TME391    | Field Training                   | 0   | Dept. approval | -           |  |
| IE211     | Probability and Statistics       | 3   | MATH102        | -           |  |
| IE371     | Engineering Economics            | 3   | MATH205        | -           |  |
| ME344     | Control Systems I                | 3   | TME214,        | -           |  |
|           |                                  |     | ENE211,        |             |  |
|           |                                  |     | MATH205        |             |  |
| ME346     | Instrumentation and Measurements | 2   | ENE211,        | -           |  |
|           |                                  |     | MATH205        |             |  |
| GERL302   | German VI                        | 3   | GERL301        | -           |  |
|           | Total                            | 19  |                |             |  |

| Fourth Year <sup>d</sup> |                    |     |               |             |
|--------------------------|--------------------|-----|---------------|-------------|
| First Semester           |                    |     |               |             |
| Course ID                | Course Title       | Cr. | Prerequisites | Corequisite |
|                          |                    | Hr. |               |             |
| -                        | Technical Elective | 3   | -             | -           |
| -                        | Technical Elective | 3   | -             | -           |
| -                        | Technical Elective | 3   | -             | -           |
| -                        | Technical Elective | 3   | -             | -           |
|                          | Total              | 12  |               |             |

| Fourth Year*    |                          |     |               |             |
|-----------------|--------------------------|-----|---------------|-------------|
| Second Semester |                          |     |               |             |
| Course ID       | Course Title             | Cr. | Prerequisites | Corequisite |
|                 |                          | Hr. |               |             |
| TME491          | International Internship | 12  | TME391        | -           |
|                 | Total                    | 12  |               |             |

## German year prerequisites

- A minimum GPA of 60.0%
- Successful completion of 90 credit hours excluding all German language courses
- Passing GERL302 German VI, ENGL201 English VI, and ARB099 Arabic 99
- Passing the following four courses:
  - TME324 Power and Refrigeration Cycles
  - TME331 Theory of Machines
  - TME332 Machine Design
  - ENE321 Heat Transfer

<sup>&</sup>lt;sup>d</sup> Courses attended and/or passed during International Training are not transferable

| Fifth Year |                                      |     |               |             |  |
|------------|--------------------------------------|-----|---------------|-------------|--|
|            | First Semester                       |     |               |             |  |
| Course ID  | Course Title                         | Cr. | Prerequisites | Corequisite |  |
|            |                                      | Hr. |               |             |  |
| TME351     | Spare Parts and Storage Management   | 3   | IE371         | -           |  |
| TME515     | Mechanical Vibrations                | 3   | TME214,       | -           |  |
|            |                                      |     | MATH205       |             |  |
| TME522     | HVAC                                 | 3   | TME324,       | -           |  |
|            |                                      |     | ENE321        |             |  |
| TME553     | Reliability and Quality Control      | 3   | IE211         | -           |  |
| TME591     | Graduation Project I                 | 3   | TME491        | -           |  |
| ME534      | Electrical Machines and Control      | 3   | ENE211        | -           |  |
| ME345      | Vibration and Control Lab            | 1   | ME344         | -           |  |
| ME347      | Instrumentation and Measurements Lab | 1   | -             | ME346       |  |
|            | Total                                | 20  |               |             |  |

| Fifth Year      |                                     |     |               |             |  |
|-----------------|-------------------------------------|-----|---------------|-------------|--|
| Second Semester |                                     |     |               |             |  |
| Course ID       | se ID Course Title                  |     | Prerequisites | Corequisite |  |
|                 |                                     | Hr. |               |             |  |
| TME523          | Internal Combustion Engines         | 3   | TME324        | -           |  |
| TME520          | Applied Thermal Systems Lab         |     | TME324,       | -           |  |
|                 |                                     |     | ENE321        |             |  |
| TME552          | Management of Maintenance Systems   | 3   | TME351        | -           |  |
| TME538          | Applied Machine Design              | 2   | TME332        | -           |  |
| TME539          | Computer-aided Design               | 1   | -             | TME538      |  |
| TME592          | Graduation Project II               | 3   | TME591        | -           |  |
| ME535           | Electrical Machines and Control Lab | 1   | ME534         | -           |  |
| -               | University Elective                 | 3   | -             | -           |  |
| -               | University Elective                 | 3   | -             | -           |  |
|                 | Total                               | 20  |               |             |  |

## VI. Course Identification Convention

## Example: TME321

Program: TME is the code of Mechanical and Maintenance EngineeringLevel: The first number (3) represents the level of the course in the study planField: The second number (2) represents the group number of the courseSequence: The third number (1) represents a unique serial number of the course in its group

## Groups

|          |                    | Course ID | Course Title                          |
|----------|--------------------|-----------|---------------------------------------|
|          |                    | TME212    | Statics                               |
| Group 1: |                    | TME213    | Mechanics of Materials                |
|          | ed                 | TME214    | Dynamics and Vibrations               |
|          | pplie              | TME512    | Finite Element Method                 |
|          | Ap<br>Med          | TME513    | Multi-Body Dynamics                   |
|          | _                  | TME514    | Machine Dynamics                      |
|          |                    | TME515    | Mechanical Vibrations                 |
|          |                    |           |                                       |
|          |                    | TME221    | Thermodynamics                        |
|          |                    | TME222    | Fluid Mechanics                       |
|          | Sa                 | TME323    | Thermofluids Lab                      |
|          | ence               | TME324    | Power and Refrigeration Cycles        |
| rb 7     | Scie               | TME520    | Applied Thermal Systems Lab           |
| irou     | nal                | TME522    | HVAC                                  |
| 0        | Jerr               | TME523    | Internal Combustion Engines           |
|          | È                  | TME525    | Advanced Heat Transfer                |
|          |                    | TME527    | Turbomachinery                        |
|          |                    | TME529    | Renewable Energy                      |
|          |                    |           |                                       |
|          | 18                 | TME331    | Theory of Machines                    |
| 33:      | nica<br>gn         | TME332    | Machine Design                        |
| ino.     | cha                | TME537    | Reverse Engineering                   |
| ษั       | D<br>Me            | TME538    | Applied Machine Design                |
|          |                    | TME539    | Computer-aided Design                 |
|          |                    | 1         |                                       |
| p 4:     | ied<br>ite-<br>ce  | TME542    | Automotive Maintenance                |
| rou      | ppl<br>1air<br>1an | TME545    | Aircraft Maintenance                  |
| Ū        | ₹2-                | TME546    | Building Maintenance                  |
|          |                    |           |                                       |
| p 5:     |                    | TME351    | Spare Parts and Storage Management    |
|          | nance<br>ement     | IME551    | Safety and Loss prevention            |
|          |                    | TME552    | Management of Maintenance Systems     |
| rou      | nte<br>Jag(        | TME553    | Reliability and Quality Control       |
| Ū        | Mai<br>Mar         | TME554    | Logistics Engineering                 |
|          | ~ ~                | TME555    | Maintenance Costing                   |
|          |                    | TME557    | Modern Maintenance Management Systems |

|          |                 | Course ID | Course Title                              |
|----------|-----------------|-----------|-------------------------------------------|
|          |                 | TME391    | Field Training                            |
| Group 9: | cial            | TME491    | International Internship                  |
|          | Spe             | TME591    | Graduation Project I                      |
|          | nd              | TME592    | Graduation Project II                     |
|          | ctical a<br>Top | TME596    | Special Topics I                          |
|          |                 | TME597    | Special Topics II                         |
|          | Pra             | TME598    | Special Topics In Mechanical Engineering  |
|          | —               | TME599    | Special Topics In Maintenance Engineering |

## VII. Description of Courses offered by the Mechanical and Maintenance Engineering Department

## TME212: Statics

Vector mechanics of forces and moments, free-body diagrams, couples, resultants, equilibrium of particles and rigid bodies in two and three dimensions, forces in trusses, frames, and machines, centroids, centers of mass, distributed forces, internal shear forces and bending moments in beams, shear force and bending moment diagrams, friction, area of moments of inertia.

Prerequisites: MATH102, PHYS103

## **TME213: Mechanics of Materials**

**TME214: Dynamics and Vibration** 

Normal and shear stress and strain, deflection of axially loaded members, thermal stress, torsion of bars with circular sections, shear stress, angle of twist, power transmission, bending of beams, bending and shear stress, combined loadings, beam deflection, column buckling.

Kinematics and kinematics of particles, Newton's laws, planar kinematics and kinetics of a rigid

Prerequisites: TME212

# bodies, free vibration of single degree of freedom systems, harmonic excitation, general force

Prerequisites: TME212

## TME221: Thermodynamics

Prerequisites: MATH102

## **TME222: Fluid Mechanics**

Physical properties of fluids and fundamental concepts in fluid mechanics, hydrostatics, conservation laws for mass, momentum and energy, flow similarity and dimensional analysis as applied to engineering problems in fluid mechanics, laminar and turbulent flow, engineering applications such as flow measurement flow in pipes and fluid forces on moving bodies.

Prerequisites: MATH205

## **TME314: Mechanical Vibrations**

Mathematical techniques for linear system vibrations, review of vibrations of single-degree-offreedom systems, vibrations of multi-degree-of-freedom systems, small oscillation theory, free vibration eigenvalue problem, undamped system response, viscously damped systems, vibrations of continuous systems, modes of vibration of strings, bars, and beams.

Prerequisites: TME214, MATH205

response.

Introduction to thermodynamics concepts, properties of pure substances, first law of thermodynamics: analysis of closed systems, analysis of open systems under steady and unsteady conditions, second law of thermodynamics, entropy.

3 Cr (3,0)

## TME323: Thermofluids Lab

**TME324:** Power and Refrigeration Cycles

Measurement of thermal conductivity, forced convection heat transfer, measurement of specific heat ratio, flow through nozzles, losses in pipes and fittings, hydrostatic pressure, impact of water jet, flow visualizations, performance of hydraulic positive displacement pumps.

Prerequisites: TME222, ENE321

## Exergy, gas power cycles, vapor and combined power cycles, refrigeration cycles, gas mixtures, gasvapor mixtures & air conditioning, thermodynamic relations.

Prerequisites: TME221

## Position analysis, mechanisms, vector analysis of velocity and acceleration, analytic and graphical loop closure methods, cam design, spur, bevel, and helical gears, gear trains, force analysis, static and dynamic balance of rotors, synthesis of linkage, spatial mechanisms.

Prerequisites: TME214, ME111, MATH203

## **TME332: Machine Design**

TME331: Theory of Machines

Introduction to design process, design considerations, stress analysis and deflection of mechanical elements, energy methods, static strength and failure theories, fatigue strength and failure theories, shafts, nonpermanent joints, mechanical springs, and rolling bearings, CAD software, stress analysis using FEM codes, kinematics simulations, surface generation, 3D printing.

Prerequisites: TME213, IE325, ME111

## Forecasting of spare parts needed for equipment maintenance, inventory control models, safety stock and inventory costs, master production schedule and its effect on maintenance operations, spare parts requirement planning.

| TME391: Field Training                        | 0 Cr (0,0)       |
|-----------------------------------------------|------------------|
| 160 hours of training at a company in Jordan. |                  |
|                                               | Prerequisites: - |
| TME491: International Internship              | 12 Cr (0,0)      |
|                                               |                  |

Twenty-weeks of internship at a company in Germany.

**TME351: Spare Parts and Storage Management** 

## Prerequisites: TME324, TME332, TME391

## **TME512: Finite Element Method**

Definitions and simple finite element formulation truss, beam and triangular elements, modeling principles and mesh specification, computer applications and term project.

Prerequisites: TME332

### 1 Cr (0,3)

## 3 Cr (3,0)

4 Cr (3,3)

3 Cr (3,0)

## 0)

Prerequisites: IE371

3 Cr (3,0)

### **TME513: Multi-Body Dynamics**

Principles of kinematics and dynamics in spatial motion, constraint equations describing various types of spatial kinematic joints, algorithms for automatic generation of the constraint equations, techniques for automatic generation of the spatial equations of motion.

Prerequisites: TME331

### **TME514: Machine Dynamics**

**TME515: Mechanical Vibrations** 

Force analysis of machinery, resonance (symptoms, tests, fixes), rotors dynamics, dynamic balance of machinery, analytical determination of unbalance, dynamic behavior of drives and machine frames as complex systems, typical dynamic effects, such as the gyroscopic effect, damping and absorption, shocks.

Prerequisites: TME331

Fundamentals of vibration, free and force vibration of (undamped/damped) single degree of freedom systems. Vibration under general forcing conditions. Free and force vibration of (undamped/damped) two degree of freedom systems. Free and force vibration of (undamped/damped) multi-degree of freedom systems. Determination of natural frequencies and mode shapes.

Prerequisites: TME214, MATH205

## Psychrometric principles, thermal comfort, air conditioning processes, inside and outside design conditions, heating load calculations, infiltration, cooling load calculations, solar gain, design of

Prerequisites: TME324, ENE321

## **TME523: Internal Combustion Engines**

**TME520: Applied Thermal Systems Lab** 

Engine classifications and terminology, engine operating characteristics and performance parameters, air standard engine cycles including: Otto, Diesel, Dual and two-stroke cycles, common fuels used in IC engines, combustion reactions and thermochemical calculations, engine emissions and their control, air and fuel induction methods, heat transfer in engines, friction losses, lubricants and lubrication systems.

Experimental analysis and maintenance of pumps, chillers, heat pumps, compressors, evaporators, condensers, expansion devices, cooling towers, boilers and furnaces, design and integration of

Prerequisites: TME324

Prerequisites: TME324, ENE321

## **TME525: Advanced Heat Transfer**

thermal systems.

Multi-dimensional steady state conduction, analytical, graphical and numerical solutions, onedimensional transient conduction, convective heat transfer in turbulent and high speed flows, freezing, melting, heat pipe and multimode heat transfer.

Prerequisites: ENE321

## TME522: HVAC

heating and air conditioning systems, HVAC equipment and components.

## 3 Cr (3,0)

3 Cr (3,0)

## 3 Cr (3,0)

3 Cr (3,0)

## 3 Cr (3,0)

1 Cr (0,3)

### TME527: Turbomachinery

TME537: Reverse Engineering

**TME538: Applied Machine Design** 

aircraft industries.

Impulse and reaction turbines, velocity diagrams, energy equations and degree of reaction, total pressure correlation, turbine design, three dimensional analysis, free vortex design, estimation of stage and design point performance.

Prerequisites: TME222

## TME529: Renewable Energy 3 Cr (3,0) Design and analysis of renewable energy systems and technologies including: solar thermal, solar Photovoltaics, wind energy, geothermal energy, biomass, hydropower, fuel cells.

Prerequisites: TME324

## 3 Cr (3,0)

Prerequisites: TME332

## Lubrication and journal bearings, gears (general), spur gears, helical gears, bevel gears, belts, flexible drives and flywheels, brakes and clutches.

Prerequisites: TME332

## **TME539: Computer-aided Design**

Simulation and animation of mechanical problems, optimal synthesis and selection of machine elements, implementation of CAD-Package for visualization.

Corequisites: TME538

## **TME5422:** Automotive Maintenance

TME545: Aircraft Maintenance

Maintenance of automotive systems: automatic transmission and transaxles, power train and axles, suspension and steering, brakes, electrical/electronic systems, cooling system, heating and air conditioning, control system, and engine performance.

Prerequisites: TME332

## Aircraft physics, aerodynamics, tools and techniques, hardware and materials, fluid lines and fittings, basic electricity, blueprints and drawings, weight and balance, maintenance standards and documentation, aircraft inspection.

Prerequisites: TME332

### 3 Cr (3,0)

### Introduction to reverse engineering, methodologies and techniques for reverse engineering, selecting a reverse engineering system, introduction to rapid prototyping, applications in the automotive and

2 Cr (2,0)

## 1 Cr (0,3)

3 Cr (3,0)

### **TME546: Building Maintenance**

**TME551: Safety and Loss Prevention** 

**TME552: Management of Maintenance Systems** 

Building systems overview, building scoping for operational improvement, O&M practices for sustainable buildings, indoor environmental quality, preventive maintenance and troubleshooting principles, HVAC systems maintenance, facility electrical systems maintenance, efficient lighting fundamentals, maintenance of motors and drives.

Study of safety elements and hazards associated with different types of machines and work environment, accident recognition and elimination, OSHA standards of maintenance operations, designing and managing of safety operations procedures and guidelines of maintenance, types of

Reliability, maintainability, availability, and safety of products and systems, building and analyzing reliability models using block diagrams, Fault Tree Analysis (FTA), and Failure Mode and Effect Analysis (FMEA), concepts and methods of maintenance planning and management with a focus on

Prerequisites: TME324

## Prerequisites: IE325

## corrective and preventive maintenance, cost estimation and scheduling of maintenance activities.

Prerequisites: TME351

## Prerequisites: IE211

## **TME554: Logistics Engineering**

Requirements analysis, systems definition, alternatives analysis and systems verification Logistics in the system life-cycle phases, supportability analysis, logistics measures, system life-cycle costing, integrated logistics systems of people, processes and technology.

Prerequisites: TME351

## and outsourcing, maintenance costing reports and budgeting activities, financial statements, traditional costing, activity-based costing, fundamental pricing issues and price setting.

## TME557: Modern Maintenance Management Systems

Introduction to computerized maintenance management systems, practical applications and case studies.

Prerequisites: TME351

Elements of maintenance costs including material, spare parts, labor (direct and indirect), overhead,

Prerequisites: TME351

3 Cr (3,0)

3 Cr (3,0)

3 Cr (3,0)

## 3 Cr (3,0)

improvement. Introduction to statistically based quality control and improvement methods.

**TME553: Reliability and Quality Control** 

TME555: Maintenance Costing

losses in production lines and the role of maintenance to reduce it.

Study and application of statistical models and methods for defining, measuring and evaluating reliability of products, processes and services: life distributions, reliability functions, reliability configurations, reliability estimation, parametric reliability models, accelerated life testing, reliability

3 Cr (3,0)

3 Cr (3,0)

| TME591: Graduation Project I                                                                           | 3 Cr (0,9)                    |
|--------------------------------------------------------------------------------------------------------|-------------------------------|
| The first part of a team-based one-year senior design project in the field maintenance engineering.    | d of mechanical and           |
|                                                                                                        | Prerequisites: TME 491        |
| TME592: Graduation Project II                                                                          | 3 Cr (0,9)                    |
| The second and final part of a team-based one-year senior design proje<br>and maintenance engineering. | ct in the field of mechanical |
|                                                                                                        | Prerequisites: TME 591        |
| TME596: Special Topics I                                                                               | 1 Cr (0,3)                    |
| A course on a special topic in mechanical engineering.                                                 |                               |
|                                                                                                        | Prerequisites: Dept. Approval |
| TME597: Special Topics II                                                                              | 2 Cr (2,0)                    |
| A course on a special topic in mechanical engineering.                                                 |                               |
|                                                                                                        | Prerequisites: Dept. Approval |
| TME598: Special Topics In Mechanical Engineering                                                       | 3 Cr (3,0)                    |
| A course on a special topic in mechanical engineering.                                                 |                               |
|                                                                                                        | Prerequisites: Dept. Approval |
| TME599: Special Topics In Maintenance Engineering                                                      | 3 Cr (3,0)                    |
| A course on a special topic in maintenance engineering.                                                |                               |

Prerequisites: Dept. Approval

#### **Description of Courses offered by other Departments** VIII.

## IE121 Engineering Workshop

IE211: Probability and Statistics

**IE223: Material Science** 

General safety, materials and their classifications, measuring devices and their accuracy, basic household plumbing and electricity, fits and tolerances, theoretical background for the practical exercises including fitting, forging, carpentry, casting, welding, mechanical saws, shearers, drills, lathes, milling machines, shapers and grinders.

Prerequisites: -

This course familiarizes students with descriptive statistics, probability basics, random variables, special discrete random variables, and various distributions: normal, Student's t, Chi-square, and Fisher's F. It includes a discussion of inference about one mean, one proportion, difference between two means and difference between two proportions and the ratio of two variances, large and small samples, paired and independent samples. The MINITAB statistical software package will be used; there will also be an introduction to the use of SPSS.

Classification and study of engineering materials, their structure, properties, and behavior, typical metals and alloys, plastics and rubber, and ceramic materials; phase equilibrium and manipulation of properties and behavior by adjustment of composition and processing variables; responses of engineering materials to stress and environmental variables, mechanical properties.

Prerequisites: IE121

Prerequisites: MATH102

## **IE224: Material and Mechanics Lab**

Studying the properties of engineering materials and the relationship between these properties and atomic structure, cross-sectional sample preparation, optical microscopy, heat treatment, corrosion behavior, tensile and compression strength, hardness testing, impact testing, creep behavior, and fatigue behavior.

> Prerequisites: IE223 Corequisite: TME213

## IE325: Manufacturing Processes

Traditional manufacturing processing of materials (ferrous and non-ferrous) including metal cutting, casting, rolling, forging, and drawing. Modern manufacturing processes and related topics including ceramics, composites, powder metallurgy, property enhancing and surface processing operations, and rapid prototyping. Manufacturing Processes Lab: Experiments in casting, forming, machining, welding, heat treatment and plastic manufacturing.

Prerequisites: IE121, TME213

## **IE371: Engineering Economics**

Time value of money, interest formula, depreciation models, tax effects, rate of return, cash flow, project evaluation methods, replacement analysis, break even analysis, economic studies for decision making under risk.

Prerequisites: MATH205

3 Cr (3,0)

## 3 Cr (3,0)

4 Cr (3,3)

1 Cr (0,3)

## 3 Cr (0,0)

1 Cr (0,3)

### **IE541: Industrial Automation**

Manufacturing automation strategies. Sensors, controllers, and actuators. Signal converters (A/D and D/A) and data acquisition systems. PLC and CNC. Industrial robots in automation. Automated material handling systems.

Prerequisites: ME344

## **IE585: Human Resource Management**

**ME111: Computer Aided Engineering Drawing** 

Hiring, training, and developing, and retaining employees. Employee benefits, health, safety and security; employee and labor relations. Employee rights, privacy and security, compensation, and performance evaluation. The roles of personnel departments, organizational strategic planners, and line supervisors are considered.

Prerequisites: IE371

The use of computer aided software in drawing such as AutoCAD. Geometric construction. Orthographic and Isometric projections; Sketching, sectioning, dimensioning and layering. Model layout (wire-frame, surface, and solid modeling), plotting to scale, blocks and attributes, Introduction to descriptive geometry, perspective drawing. Engineering applications.

Prerequisites: CS116, CS1160

#### ME344: Control Systems I

Modeling of dynamic systems, linearization of nonlinear systems, transient response, transfer function, block diagrams, steady state error and stability, root locus, PID control, lead, lag, and leadlag control, Bode plots, and Nyquist stability criterion.

Prerequisites: TME214, ENE211, MATH205

## **ME345: Vibration and Control Lab**

Free vibration of simple mass-spring systems, free damped response of simple mass-spring-damper systems, static and dynamic balancing, harmonically excited systems, frequency response of the harmonically excited systems, frequency response with base excitation, introduction to Control, massspring-damper system simulation, PID Controllers, simple and inverted pendulum control, fluid level and temperature control, servo systems, and twin rotor control.

Prerequisites: ME344

## **ME346: Instrumentation and Measurements**

Introduction to instrumentation; Units, Dimensions and standards; Error measurements; Statistical analysis of experimental data; Op-Amp circuits in instrumentation; Basic electrical measurement and sensing devices: physics of electric, magnetic, chemical sensors displacements, area, pressure, flow, temperature, thermal and transport properties, force, torque and strain measurements. Smart sensors and networking of sensor systems. Data acquisition and processing.

Prerequisites: ENE211, MATH205

4 Cr (3,3)

3 Cr (3,0)

3 Cr (2,3)

1 Cr (0,3)

3 Cr (3,0)

2 Cr (2,0)

### **ME347: Instrumentation and Measurements Lab**

Measurements with different micrometers & vernier measuring instruments, angular measurements, tool maker's microscope, optical projectors, surface measurements. Analysis of experimental data and error estimation. Basic electrical measurement and sensing devices: physics of electric, magnetic, chemical sensors. Displacement, area, pressure, flow, temperature, thermal and transport properties, force, torque, and strain measurements. Smart sensors and networking of sensor systems. Data acquisition and processing.

Harmonic oscillator, mechanical and electromagnetic oscillations, forced oscillations, resonance, coupled oscillators, electromagnetic waves, traveling waves, standing waves, interference and

## Corequisite: ME346

Prerequisites: TME214

pumps, piping system basic circuits in pneumatics and hydraulics, design and simulation of pneumatic and hydraulic circuits, servo pneumatics and servo hydraulics, basics of servo drives, assembling, measuring techniques. Prerequisites: ME223 or TME222

Pneumatic and hydraulic components; compressor, cooler, compressed-air containers, filters, valves,

Fundamentals of energy, single and three phase AC systems, power quality, magnetic circuits,

Single and three phase transformers (open and short tests), single and three phase induction motors (open and locked rotor tests), three phase synchronous motor and generator, DC motors and generators (shunt, series, separately excited connections), motor control using PLC.

Prerequisites: ME534

## State-space modeling of multi-variable systems, stability, sensitivity, controllability, and observability, optimal observers, Kalman filter, linear quadratic regulators, digital control systems, z-transform,

stability, transient response, digital cascade compensators.

Prerequisites: ME344

#### **ME551: Robotics**

ME548: Control Systems II

Planar and spatial transformations, forward and inverse kinematics, trajectory planning, robot dynamics, robot control (linear, nonlinear, and force control).

Prerequisites: ME344, TME331

### ME534: Electrical Machines and Control

**ME535: Electrical Machines and Control Lab** 

diffraction of waves, dispersion of waves.

**ME522: Hydraulics and Pneumatics** 

**ME516: Waves and Vibrations** 

transformers, single and three phase induction motors, power electronics, synchronous machines, DC machines, control drives and circuits, building electrical systems, and programmable logic controllers (PLCs).

Prerequisites: ENE211

## 1 Cr (0,3)

## 3 Cr (3,0)

3 Cr (3,0)

3 Cr (3,0)

3 Cr (3,0)

1 Cr (0,3)

4 Cr (3,3)

### ME582: Micro Electromechanical Systems

Introduction to micromachining processes; mechanical properties of materials used in micromechanical systems; design and fabrication of free standing structures; sacrificial and structural layers; finite element modeling; micromechanical components; solid lubrication of microbearings; special techniques: double-side lithography, anodic bonding, electro-chemical drilling, deep etching, LIGA process, laser microfabrication; influence of IC fabrication processes on the mechanical properties; applications in microdevices; simulation and packaging.

Prerequisites: ME223, ENE211, TME213

#### **Description of Courses offered by other Schools** IX.

## **BM371: Numerical Methods for Engineers**

Fundamentals of error analysis, numerical solutions of linear and nonlinear equations, numerical solution of system of equations, curve fitting, numerical integration and differentiation, numerical solution of ordinary differential equations. Application of numerical methods using relevant software packages.

Prerequisites: CS116, MATH203, MATH205

## **CS116: Computing Fundamentals**

Basic computer skill; Programming concepts; algorithms: data types, arithmetic, logical, relational, Boolean, and assignment operators, simple input and output statements; programming control structures; data structures: single and multidimensional arrays; character strings; functions; pointers; file structures and representation.

## **CS1160: Computing Fundamentals**

3-hours lab session every week to enhance hands-on experience on topics that are theoretically covered in the Computing Fundamentals course using Gnu C compiler on a Solaris/Sun environment. Corequisites: CS116

## **ENE211: Electrical Circuits I**

The course Introduces the students to the basic concept of circuit and devices. And to the concepts of design to all kind of electrical circuits, such as DC and AC electric circuits. It Reinforce in the student a systematic approach to problem solving. The ability to involve in a team work. The concept and link between the theory and practical of electric circuits. Reinforce the communication skills, written and oral.

Prerequisites: PHYS104

## **ENE213: Electrical Circuits Lab**

Resistive circuits, Potentiometers, Superposition, Thevenin's theorem and maximum power transfer, RLC current and voltage characteristics, Frequency response of RL, RC and RLC circuits, Series and parallel resonant circuits, Amplifiers.

Prerequisites: ENE211

## Prerequisites: -

3 Cr (3,0)

## 3 Cr (3,0)

## 3 Cr (3,0)

3 Cr (3,0)

3 Cr (3,0)

1 Cr (0,3)

### ENE321: Heat Transfer

Basic concepts, heat conduction equation, steady heat conduction, forced convection: external and internal flow, free convection, heat exchangers, radiation heat transfer.

Prerequisites: TME221, TME222, MATH205

### ENE432: Power Plants Engineering

This course will be divided in two parts: Power cycle review, thermal power plant and power market. Power cycle review covers: Vapor-cycles, gas turbine-cycles, and combined-cycles. Thermal power plant covers: components, selection and economics for Steam and gas turbine power plants which include: steam generators, condenser and condensate, feed-water heating systems which covers Fuel management and boiler automatic control systems, turbine plant, generator plant, turbine and generator control and protection systems, cooling water systems, steam and water cycle, power plant thermal performance and efficiency losses. power market covers: Alternative power generation technologies, electricity and gas networks and markets, climate change and energy markets.

Prerequisites: TME222, ENE321

## ENE537: Energy Efficiency, management and laws

Energy management principles; energy conservation; energy auditing; analysis; formulation of energy management options; economic evaluation, implementation & control; energy conservation techniques – conservation in energy intensive industries; integrated resource planning; demand-side management; cogeneration; total energy schemes; thermal insulation; energy storage; economic evaluation of conservation technologies; analysis of typical applications. Energy law and regulation in Jordan and worldwide.

Corequisites: TME522, TME523

## MATH099: Pre-Math

Real numbers and their properties, solutions of equations and inequalities, functions, domain of functions, operations on functions, polynomials, zeros of polynomials, power, exponential, logistic, logarithmic, and trigonometric functions and their graphs, applications of trigonometry, analytic geometry: lines, circles and parabolas.

## MATH102: Calculus II

This is a course in multivariate calculus as a continuation of Calculus I. The course focuses on power series, polar coordinates and polar functions, sequences and infinite series, vectors, functions of several variables and their limits, partial differentiation and their applications. The course views multiple integrals: double and triple, line integrals, surface integrals, Green's theorem, Gauss's divergence theorem, and Stoke's theorem.

Prerequisites: MATH101

## **MATH203: Applied Mathematics for Engineers**

Vector analysis in Cartesian coordinates. General Curvilinear Coordinates, Vector calculus in general curvilinear coordinates with emphasis on Spherical and Cylindrical coordinates, transformations between different coordinate systems, vector differentiation. Matrices and linear equations; Matrices and Linear Operators; Determinants, Eigenvalues and eigenvectors. Complex Numbers and Complex Variables; Representation of complex numbers, Powers and roots of complex numbers, Functions of a complex variable. Review of Infinite Series; Infinite series of constant terms, Convergence tests, Power series and radius of convergence, Taylor, and Maclaurin series and Fourier series.

3 Cr (3,0)

## 0 Cr (3,0)

Prerequisites:-

3 Cr (3,0)

3 Cr (3,0)

## 3 Cr (3,0)

## **MATH205: Differential Equations**

MGT525: Project Management

Ordinary differential equations; Sturm-Liouville theory, properties of Special Functions, Solution methods including Laplace transform, and Fourier transform. Eigenvalue problems and expansions in orthogonal functions. Partial differential equation: classification, separation of variables, solution by series and transform methods. Models in Applied Mathematics; Applications to illustrate typical problems and methods of applied mathematics in solid and fluid mechanics, fields of physics, deformation and vibration, wave phenomena, diffusion phenomena, heat conduction, chemical and nuclear reactors, and biological processes.

Prerequisites: MATH102

Introduction to project management (project definition, project life cycle), project initiation (project selection, project manager, project-organization relationship), project planning (project costing, task scheduling, resource allocation, risk management), and project execution (controlling, auditing, terminating).

Physics and measurement. Motion in one dimension. Vectors. Motion in two dimensions. Force and motion. Kinetic energy and work. Potential energy and conservation of energy. Linear momentum and collisions. Rotation. Rolling and angular momentum.

Prerequisites: -

Prerequisites: IE371

Electric Fields. Gauss's Law. Electric Potential. Capacitance and Dielectrics. Current and Resistance. Direct Current Circuits. Magnetic Fields. Sources of Magnetic Field. Faraday's Law.

PHYS106: General Physics Lab 1 Cr (0,3) Laboratory exercises that apply physical principles introduced in Physics I and Physics II courses. The lab includes the use of data logging techniques, observations, and scientific reasoning in practical situations.

> Prerequisites: PHYS103 Corequisites: PHYS104

ARB099: Arabic 99

This course aims to develop student's ability to read, comprehend, literary analyze, grammatically analyze, linguistically analyze, poetically analyze, and rhetorically analyze texts properly. The course also includes a selection of Arabic literature in poetry and prose representing different literary ages, in addition to several common forms of writing such as: scientific article, news article, and others.

Prerequisites: -

3 Cr (3,0)

## **ARB100: Arabic**

This course aims to improve the student's competence in the various linguistic skills in terms of: reading, comprehension, and taste. This is achieved through the study of selected texts with many implications that raise issues in spelling, grammar, composition, meaning, and inference, and the use of an old and modern thesaurus.

Prerequisites: ARB099

## PHYS104: Physics II

PHYS103: Physics I

Prerequisites: PHYS103

## 0 Cr (3,0)

## 3 Cr (3,0)

3 Cr (3,0)

3 Cr (3,0)

### ENGL098: English I

## Students will focus on English at an elementary level concentrating on the receptive skills of reading and listening, and the productive skills of writing and speaking. These will include such things as independent clauses, verb tenses, model verbs, adverbs, short dialogues, reading simple material and answering short questions, writing short meaningful sentences, listening to short conversations.

Prerequisites: -

### ENGL099: English II

Students will focus on English at a pre-intermediate level concentrating on the receptive skills of reading and listening and the productive skills of writing and speaking. These will include such things as comparatives and superlatives, possessive adjectives and pronouns, vocabulary building, role play activities for speaking, reading comprehension and writing short descriptive paragraphs.

Prerequisites: ENGL098

### ENGL101: English III

Students will focus on English at an intermediate level concentrating on the receptive skills of reading and listening and the productive skills of writing and speaking. These will include collocations, tense review, affirmative, negative statements, synonyms and antonyms, time clauses, conditionals, active and passive forms, reported speech, phrasal verbs, reading comprehension with detailed questions, vocabulary and writing developed descriptive and opinion essays.

Prerequisites: ENGL099

## ENGL102: English IV

Students will focus on English at an upper-intermediate level concentrating on the receptive skills of reading and listening and the productive skills of writing and speaking. Model verb review, silent letters and proper pronunciation, jobs and careers, requests and offers, more phrasal verbs with vocabulary building, relative clauses and relative pronouns, narrative tenses for writing exercises, wishes and regrets, reading and comprehending longer passages with direct and inference questions of medium difficulty, hypothesizing, and writing fully developed descriptive, argumentative and analytical essays of 350 words.

Prerequisites: ENGL101

## ENGL201: English V

Students will focus on English at an Advanced level. Students will analyze and produce 2 – 3 page essays with an emphasis on argumentation and persuasion working both independently and cooperatively to gather, evaluate, and synthesize necessary information. Class activities include interactive lectures, small group and class discussions, informal debates, peer feedback, individual presentations, focused listening exercises and focused viewing exercises as well as assorted reading, writing, and grammar assignments. There will be some poetry analysis together with reading and understanding a short story and a drama using basic literary terms and concepts.

Prerequisites: ENGL102

## 0 Cr (3,0)

1 Cr (3,0)

0 Cr (3,0)

## 1 Cr (3,0)

## 28

#### **ENGL202: English VI**

Students will continue to focus on English at an Advanced level. Students will analyze and produce 4 – 5 page essays emphasizing argumentative, persuasive and discursive styles of writing, working both independently and cooperatively to gather, evaluate, and synthesize necessary information. Students will integrate the practice of critical thinking and reading into the writing process. Class activities include interactive lectures, small group and class discussions, informal debates, mini-conferences, peer feedback, individual presentations, focused listening exercises and focused viewing exercises as well as assorted reading, writing, and grammar assignments. There will be some poetry analysis together with reading and understanding a short story and a drama using stronger and more intensive literary terms and concepts than in 201.

Prerequisites: ENGL201

## Can understand and use familiar, everyday expressions and very simple sentences, which aim at the satisfaction of specific needs. Can introduce oneself, and others, and ask others questions to themselves - e.g. where they live, which people they know or what kind of things they have - and can give answers on questions of this kind. Can communicate on a basic level if those involved with him/ her in a conversation speak slowly and clearly and are willing to help.

Prerequisites: -

## **GERL102: German II**

**GERL101: German I** 

Can understand sentences and frequently used expressions if those are connected with things of immediate meaning (e.g. information to the person and to the family, buying, work, closer environment). Can communicate in simple, routine situations, with the purpose of a simple and direct exchange of information about familiar and common things. Can describe with simple means their own origin and training, direct environment and things that are in connection with direct needs.

Prerequisites: GERL101

#### **GERL201: German III**

Can understand the main points if no dialect is used and if it concerns familiar things about work, school, spare time etc. Can master most situations which one encounters on journeys in a German speaking area. Can express oneself simply and coherently about familiar topics and areas of personal interest. Can report experiences and events, describe dreams, hopes and goals and give short reasons or explanations about plans and opinions.

Prerequisites: GERL102

#### **GERL202: German IV**

Can understand the main contents of complex texts, as well as concrete and abstract topics; even discussions between specialists in his/ her own special field. Can communicate spontaneously and fluidly a normal discussion with native speakers, without larger effort on both sides. Can express oneself clearly and in detail in a broad spectrum of topics, describe a point of view to a current question and indicate the pro and cons of different possibilities.

Prerequisites: GERL201

3 Cr (9,0)

## 3 Cr (6,0)

## 3 Cr (6,0)

## 3 Cr (9,0)

#### **GERL301: German V**

Can understand and also seize implicit meanings of a broad spectrum of demanding, longer texts. Can express oneself spontaneously and fluidly, recognizing words without having to search for words frequently. Can use the language effectively and flexibly in social and vocational life or in training and study. Can express oneself clearly, structured and detailed, to complex subjects and use appropriate different means for linkage of texts.

Prerequisites: GERL202

## **IC101: Intercultural Communication**

This course is designed to provide prospective students (whose majors have an international flavor) with tools that offer powerful possibilities for improving the communication process. We will examine the process of sending and receiving messages between people whose cultural background could lead them to interpret verbal and nonverbal signs differently. We will learn about the diversity of these cultural differences and at the same time learn how we might overcome them. Our efforts to recognize and surmount cultural differences will hopefully open up business opportunities throughout the world and maximize the contribution of all the employees in a diverse workforce.

Prerequisites: -

### **MILS100: Military Science**

History of the Jordanian Arab Army. United Nations Peace Keeping Forces. Preparation of the nation for defense and liberation. History of the Hashemite Kingdom of Jordan and its development.

Prerequisites: -

#### **NE101: National Education**

In a context of striving towards democracy like the one Jordan enjoys today, the meaning and practice of active and responsible citizenship becomes more crucial. It is often argued that democracy requires "democrats" to flourish, and become well established. Democrats are those women and men who recognize pluralism, inclusion, positive engagement, and participation as the main values that govern their interaction with the state as citizens and with each other as diverse people of different interests. In this course you will be able to understand your rights and responsibilities as Jordanian citizen expand your knowledge about the frameworks, and processes that regulates citizen-state relationships as well as the basic necessary skills for you to practice your citizenship rights in a civic manner.

Prerequisites: -

#### SE301: Social Entrepreneurship and Enterprises

This course will serve as an introduction to the field of social entrepreneurship and social enterprises. Through lectures, field visits, analyses of relevant literature, case studies and exercises, this course will explore social entrepreneurship's potentials, opportunities and limitations. The topics will cover: Defining Social Entrepreneurship. Contextualizing Social Entrepreneurship (need, motives, forms, criteria). Role of Leadership, Creativity and Innovation. Locating SE on the profit/non-profit continuum. SE in the larger fields of development, social change, community activism. Social Enterprises (Missions, Markets, Finances). Ethical business and Corporate social responsibility.

Prerequisites: -

3 Cr (3,0)

3 Cr (3,0)

### 3 Cr (3,0)

### SFTS101: Soft Skills

This course is designed to help develop strong oral and written communication skills. The student will be given opportunities to practice writing and editing professional correspondence and technical reports. Additionally, the student will compose and deliver oral presentations. Assignments will include the use of inductive and deductive approaches to conveying a variety of messages. The course emphasis the use of software tools to prepare presentations, stress management, confidence, and sensitivity to others. It also stresses on resume writing and conducting interviews.

Prerequisites: -