

German Jordanian University

School of Applied Technical Sciences Department of Mechatronics Engineering Bachelor of Science in Mechatronics Engineering

Study Plan 2023

I. Program Objectives

Mechatronics Engineering program emphasizes the application of technologies and tools in the short term, and the ability to discover, acquire, and adapt new knowledge and skills in the long term, such that our graduates are prepared to:

- a. Pursue a successful professional career in local, German, and international markets or higher studies in the different fields of Mechatronics Engineering.
- b. Provide students with a strong foundation in the fundamentals of Mechanical, Electrical, and Computer Engineering and their integration in state of art technologies.
- c. Define, design, model, analyze, test, and incorporate principles of Mechatronics and systems engineering.
- d. Employ mathematical, computational, and experimental techniques, and interpersonal and critical thinking skills in solving practical problems in the diverse fields of Mechatronics and multidisciplinary Systems Engineering.
- e. lead/manage design, development of strong practical experience obtained through solid hands-on learning methodologies.
- f. Communicate effectively and function in various multidisciplinary and culturally diverse teams and engage in life-long learning and professional development.
- g. Understand the ethical, cultural, and environmental considerations of the Mechatronics Engineering.

II. Learning Outcomes

The B.Sc. program in Mechatronics Engineering provides students with an understanding of fundamental Mechatronics and Artificial Intelligence Engineering concepts, methodologies, and technologies as demonstrated by the following program learning outcomes (PLOs) and their associated key performance indicators (KPIs):

PLO 1. The ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics

Key Performance Indicator (KPI)	Level
PLO 1.1. Understanding complex engineering problems	Knowledge
PLO 1.2. Formulating complex engineering problems by transferring and applying principles of engineering, science, and mathematics	Competencies
PLO 1.3. Practicing principles of engineering, science, and mathematics to solve complex engineering problems	Skills

PLO 2. The ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

Key Performance In	dicator (KPI)			Level
	ealth, safety, and wel	gn requirements, strateg fare, as well as global, c		Knowledge
solutions against sp	ecifications/ requirem	to develop and evaluat nents with consideration ural, social, environmen	of public health,	Skills
PLO 3. The ability to a	communicate effective	ely with a range of audio	ences	
Key Performance In	dicator (KPI)			Level
e 1	, ,	ing and constructing cle al communication docu		Competencies
F2F: Face-to-face	BLD: Blended	OL: Online	co: Corequisit	e

PLO 3.2. Taking responsibility for developing and composing clear and professional presentations/views to a range of audience Competencies

PLO 4. The ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts

Key Performance Indicator (KPI)	Level
PLO 4.1. Understanding ethical and professional responsibilities in engineering situations	Knowledge
PLO 4.2. Analyzing the impact of engineering solutions in global, economic, environmental, and societal contexts	Skills

PLO 5. The ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

Key Performance Indicator (KPI)	Level
PLO 5.1. Taking responsibility for group work and working effectively to establish goals and plan tasks to meet the objectives of the team	Competencies
PLO 5.2. Organizing the works of a team in collaborative and inclusive environment and the execution of plans to meet objectives of the team	Skills

PLO 6. The ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

Key Performance Indicator (KPI)	Level
PLO 6.1. Managing the procedure of an experiment	Competencies
PLO 6.2. Analyzing data collected from an experiment to draw conclusions about the experiment's outcomes	Skills

PLO 7. The ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Key Performance Indicator (KPI)	Level
PLO 7.1. Describing new knowledge using appropriate learning strategies	Knowledge
PLO 7.2. Practicing new knowledge using appropriate learning strategies	Skills

Course Delivery Methods

Courses are in one of the following three methods:

• Face-to-Face (F2F) Method

Courses that are taught through face-to-face learning and are delivered at the university campus.

• Blended (BLD) Method

Courses in which teaching consists of face-to-face learning and asynchronous E-learning. The face-to-face learning takes place at the university campus. Asynchronous E-learning takes place through activities, tasks, educational duties, and assignments through the virtual E-learning platforms (Moodle and MyGJU) without direct meetings with course instructors.

• Online (OL) Method

Courses in which teaching consists of synchronous E-learning and asynchronous E-learning. Synchronous E-learning takes place through interactive virtual meetings between instructors and students directly through the virtual E-learning platform (MS Teams). The asynchronous E-learning takes place through activities, tasks, educational duties, and assignments through the virtual E-learning platforms (Moodle and MyGJU) without direct meetings with course instructors.

III. Admission Requirements

To apply for admission, the following minimum requirements must be met:

- a. A minimum GPA of 80% in the National High School Certificate or equivalent.
- b. Sitting university placement tests.
- c. Sitting for the German Language Intensive course offered by the university.

Placement Tests

Applicants must sit for placement tests in the Arabic Language, the English Language, and Mathematics to determine whether the applicant may be required to take remedial courses in the mentioned subjects. Depending on or the applicant scores in the placement tests, some of the following 3-credit-hour remedial courses are required:

Course ID	Course Name	Credit Hours	ECTS	Contact Hours Lect. Prac.				Туре	Prerequisites / Corequisites
		HOUIS					corequisites		
ARB0099	Elementary Arabic	3	3	3	-	OL	Placement test		
ENGL0098	Elementary English	3	3	3	-	F2F	Placement test		
ENGL0099	Intermediate English	3	3	3	-	F2F	ENGL0098		
MATH0099	Pre-Math	3	3	3	-	OL	Placement test		
	Total	12	12	12	0				

- Remedial courses are to be completed and passed within the first year of enrollment.
- Passing grade of remedial courses is 60%.
- ECTS (B.Sc.): is the European Credit Transfer and Accumulation, One ECTS is equivalent to 30 actual workload hours.

IV. Degree Requirements

The requirements to obtain a B.Sc. degree in Mechatronics Engineering are the following:

- a. A total of 173 credit hours of compulsory and elective courses, and practical training.
- b. A minimum of 12 credit hours of elective courses are to be taken at a partner university in Germany.
- c. A minimum of 20-week of International Internship at a company in Germany.

V. Framework for B.Sc. Degree (Credit hours)

Classification		Credit Hours		ECTS				
Classification	Compulsory	Elective	Total	Compulsory	Elective	Total		
University Requirements	21	6	27	25	6	31		
School Requirements	46	-	46	79	-	79		
Program Requirements	88	12	100	170	20	190		
Total	155	18	173	274	26	300		

Course Delivery Method	Credit Hours	Percentage
Online Courses 18		10%
Blended Courses	60	35%
Face-to-Face Courses	95	55%
Total	173	100%

1. University Requirements: (27 credit hours)

1.1. Compulsory: (21 credit hours)

Course ID	Cour	Course Name		Credit EC	Credit Hours		Contact Hours								Туре	Prerequisites / Corequisites
				Hours	Le		Prac.		corequisites							
ARB100	Arabic			3	3	3	-	OL	ARB0099							
ENGL1001	Upper-Intermedi	Upper-Intermediate English		3	3	3	-	F2F	ENGL0099							
ENGL1002	Advanced English		З	3	3	-	F2F	ENGL1001								
GERL101B1	German I B1-Trac	k		3	6	9	-	F2F	-							
GERL102B1	Correct	B1-Track		ſ	C	9		525								
GERL102B2	German II	B2-Track		3	6	9	-	F2F	GERL101B1							
MILS100	Military Science			3	2	3	-	OL	-							
NE101	National Education	on		2	2	2										
NEE101	National Education	on in English		3	2	3	-	OL	-							
		-	Total	21	25	33	0									

1.2. Elective: (6 credit hours) (Two courses out of the following)

Course ID	Course Name	Credit Hours	ECTS	Contact Hours								Туре	Prerequisites / Corequisites
		HOUIS	Lect. Pra		Prac.		corequisites						
DES101	Arts' Appreciation	3	3	3	-	OL	ENGL0098, ARB0099						
EI101	Leadership and Emotional Intelligence	3	3	3	-	F2F	ENGL0098						
IC101	Intercultural Communications	3	3	3	-	F2F	ENGL0098						
PE101	Sports and Health	3	3	3	-	F2F	ARB0099						
SE301	Social Entrepreneurship and Enterprises	3	3	3	-	F2F	ENGL0098						
SFTS101	Soft Skills	3	3	3	-	OL	ENGL0098						
BE302	Business Entrepreneurship	3	3	3	-	OL	ENGL0098						
TW303	Technical and Workplace Writing	3	3	3	-	OL	ENGL0098						
Minimum required		6	6	6	0								

Course ID	Course Name	Credit	ECTS		Contact Hours		Prerequisites /	
		Hours		Lect.	Prac.		Corequisites	
IE0121	Probability a	nd Statistics	3	5	3	-	F2F	MATH101
IE0141	Engineering	Workshop	1	4	-	3	BLD	-
IE0281	Technical W Ethics	riting and Engineering	2	3	2	-	F2F	ENGL1001
IE0361	Engineering	Economics	3	5	3	-	OL	IE0121
ME0111	Computer A	ided Engineering Drawing	2	4	-	6	BLD	CS116
MECH2102	Statics and S	trength	3	5	3	-	BLD	ARB0099,ENGL0099 PHYS103, MATH102
CHEM103	General Che	mistry	3	5	3	-	F2F	-
CS116	Computing F	undamentals	3	6	3	-	F2F	-
CS1160	Computing F	undamentals Lab	1	0	-	3	BLD	CS116 ^{co}
GERL201B1 GERL201B2	German III	B1-Track B2-Track	3	4	6	-	F2F	ARB0099,ENGL0099 GERL102B1 or GERL102B2 ARB0099,ENGL0099 GERL102B2
GERL202B1 GERL202B2	German IV	B1-Track B2-Track	3	6	9	-	F2F	ARB0099,ENGL0099 GERL201B1 or GERL201B2 ARB0099,ENGL0099 GERL201B2
MATH101	Calculus I		3	5	3	-	BLD	MATH0099
MATH102	Calculus II		3	5	3	-	F2F	MATH102
MATH203	Applied Mathematics for Engineers		3	5	3	-	F2F	ARB0099,ENGL0099 MATH102
MATH205	Differential Equations		3	5	3	-	F2F	ARB0099,ENGL0099 MATH102
PHYS103	Physics I		3	5	3	-	BLD	-
PHYS104	Physics II		3	5	3	-	F2F	PHYS103
PHYS106	General Phy	sics Lab	1	2	-	3	BLD	PHYS103, PHYS104°
		Total	46	79	50	15		

2. School Requirements: (43 credit hours)

3. Program Requirements (103 credit hours)

3.1. Program Requirements (Compulsory): (91 credit hours)

Course ID	Course Name	Credit Hours	ECTS	Contact Hours		Туре	Prerequisites / Corequisites
				Lect.	Prac.		concequisites
ME0214	Electronics for Mechatronics	3	5	3	-	F2F	ARB0099,ENGL0099, ENE211
ME0224	Computer Aided MATH for ME	2	4	-	6	BLD	ARB0099,ENGL0099, MATH102, CS116
ME0312	Microcontrollers and IoT	4	6	3	3	BLD	CE212
ME0344	Control Systems I	3	5	3	-	F2F	MECH2104, MATH205, ENE211,

								ME0224
ME0345	Control and V	ibrations Lab	1	2	-	3	BLD	ME0344
ME0348	Sensors		3	5	3	-	BLD	ENE211, ENE213, MATH205
ME0354	Actuators		3	6	3	-	F2F	ME0348
ME0355	Sensors and A	ctuators Lab	1	0	-	3	BLD	ME0348, ME0354 ^{co}
ME0391	Field Training		0	6	160 ł	nours	F2F	Dept. Approval
ME0491	International	Internship ^a	12	30	20 w	veeks	F2F	Dept. Approval
ME0522	Hydraulics and	d Pneumatics	3	4	2	3	BLD	MECH0223
ME0548	Control Syster	ms II	3	5	3	-	F2F	ME0344
ME0551	Robotics		3	5	3	-	BLD	ME0344
ME0561	Mechatronics Interfacing	Systems Design and	3	5	2	3	BLD	ME0312, ME0344, ME0354
ME0571	Machine Intel	ligence I	3	5	3	-	F2F	ME0344, ME0348
ME0572	Machine Intel	ligence II	3	5	3	-	F2F	ME0571
ME0577	Automation a	nd Industry 4.0	3	5	2	3	BLD	ME0344
ME0591	Graduation Pr	roject I	1	4	-	3	BLD	ME0491, MIN 132 CrHr
ME0592	Graduation Pr	oject II	3	6	-	9	BLD	ME0591
MECH2104	Dynamics		3	5	3	-	BLD	ARB0099,ENGL0099, MECH2102
MECH0223	Thermofluids		3	5	3	-	BLD	ARB0099,ENGL0099, MATH205
MECH0321	Thermofluids	Lab	1	2	-	3	BLD	MECH0223
BM371	Numerical Me	ethods for Engineers	3	5	2	3	F2F	CS116, MATH203, MATH205
CE212	Digital System	15	3	5	3	-	F2F	ARB0099,ENGL0099,
CE2120	Digital System	ns lab	1	4	-	3	BLD	ARB0099,ENGL0099, CE212 ^{co}
CE331	Signals and Sy	vstems	3	5	3	-	BLD	ME0344
ENE211	Electrical Circ	uits I	3	5	3	-	F2F	ARB0099,ENGL0099, PHYS104
ENE213	Electrical Circ	uits Lab	1	2	-	3	BLD	ARB0099,ENGL0099, ENE211
ENE312	Power Electro	onics	3	5	3	-	BLD	ME0214
ENE314	Power Electro	onics Lab	1	2	-	3	BLD	ENE312
GERL301B1	German V	B1-Track	3	6	9	-	F2F	GERL202B1 or GERL202B2
GERL301B2	-	B2-Track	1					GERL202B2

GERL302B1 GERL302B2	German VI	B1-Track B2-Track	3	6	6	-	F2F	GERL301B1 or GERL301B2 GERL301B2
		Total	88	170	71	63		

^a The International Internship is prerequisite to all elective courses if registered in Jordan.

3.2. Program Requirements (Electives^b): (12 credit hours)

A minimum of 12 credit hours of coursework are required. This list is open for modifications based on school council decisions.

Course ID	Course Name	Credit	ECTS		ntact ours	Туре	Prerequisites /
		Hours		Lect.	Prac.		Corequisites
ME0402	Advanced Electronics	3	5	3	-	F2F	BSC001
ME0403	Real-Time Computer Control Systems	3	5	3	-	F2F	BSC001
ME0404	Digital Control Systems	3	5	3	-	F2F	BSC001
ME0405	Process Control	3	5	3	-	F2F	BSC001
ME0406	CNC and Manufacturing Control	3	5	3	-	F2F	BSC001
ME0407	Linear Systems	3	5	3	-	F2F	BSC001
ME0408	Mobile Robots	3	5	3	-	F2F	BSC001
ME0409	Autonomous Systems	3	5	3	-	F2F	BSC001
ME0410	Process Automation	3	5	3	-	F2F	BSC001
ME0411	Industrial Robotics	3	5	3	-	F2F	BSC001
ME0412	Mechatronics of Smart Materials	3	5	3	-	F2F	BSC001
ME0413	Mechatronics Projects	3	5	3	-	F2F	BSC001
ME0415	Smart Sensors	3	5	3	-	F2F	BSC001
ME0417	Micro-Electromechanical Systems	3	5	3	-	F2F	BSC001
ME0418	Nano Systems	3	5	3	-	F2F	BSC001
ME0419	Autotronics	3	5	3	-	F2F	BSC001
ME0420	Special Topics in Electrical and Electronics Engineering	3	5	3	-	F2F	BSC001
ME0421	Special Topics in Control Engineering	3	5	3	-	F2F	BSC001
ME0422	Special Topics in Robotics and Automation	3	5	3	-	F2F	BSC001
ME0423	Special Topics in Computer and Digital Sciences	3	5	3	-	F2F	BSC001
ME0424	Special Topics in Mechatronics Technology	3	5	3	-	F2F	BSC001
ME0425	Special Topics I	1	-	1	-	F2F	BSC001
ME0426	Special Topics II	2	-	2	-	F2F	BSC001
IE0344	Manufacturing Processes	4	6	3	3	F2F	BSC001
MECH0332	Machine Design	3	5	3	-	F2F	BSC001
MECH0402	Multi-Body Dynamics	3	5	3	-	F2F	BSC001
MECH0403	Machine Dynamics	3	5	3	-	F2F	BSC001

MECH0531	Mechanical Vibrations	3	5	3	-	F2F	BSC001
CE441	Embedded System Design	3	5	3	-	F2F	BSC001
CE461	Image Processing	3	5	3	-	F2F	BSC001

^b All Elective courses to be taken at partner university in Germany.

BLD: Blended

Study Plan^c Guide for a B.Sc. Degree in Mechatronics Engineering

	First Year										
First Semester											
Course ID	Course Name	Credit Hours	ECTS	Contact Hours		Туре	Prerequisites /				
		Hours	Lect. Prac		Prac.		Corequisites				
CHEM103	General Chemistry	3	5	3	-	F2F	-				
CS116	Computing Fundamentals	3	6	3	-	F2F					
ENGL1001	Upper-Intermediate English	3	3	3	-	F2F	ENGL0099				
GERL101B1	German I B1-Track	3	6	9	-	F2F	-				
MATH101	Calculus I	3	5	3	-	BLD	MATH099				
PHYS103	Physics I	-	BLD								
	Tota	18	30	24	0						

			First Yea	ar							
Second Semester											
Course ID			Credit	ECTS		tact urs	Туре	Prerequisites /			
			Hours		Lect.	Prac.		Corequisites			
CS1160	S1160 Computing Fundamentals Lab			0	-	3	BLD	CS116 ^{co}			
IE0121	Probability and Stat	istics	3	5	3	-	F2F	MATH101			
ENGL1002	Advanced English		3	3	3	-	F2F	ENGL1001			
GERL102B1	German II	B1-Track	3	6	9		F2F	GERL101B1			
GERL102B2	German II	B2-Track	5	0	9	-	FZF	GERLIUIBI			
MATH102	Calculus II		3	5	3	-	F2F	MATH101			
PHYS104	YS104 Physics II		3	5	3	-	F2F	PHYS103			
PHYS106	5106 General Physics Lab			2	-	3	BLD	PHYS103, PHYS104 ^{co}			
ME0111	111 Computer Aided Engineering Drawing			4	-	6	BLD	CS116			
		Total	19	30	21	12					

^cThe following study plan guide does not take into account possible remedial courses.

			econd Y st Seme					
Course ID	Course Name		Credit			tact urs	Туре	Prerequisites /
		Hours		Lect.	Prac.		Corequisites	
MECH2102	Statics and Strength	1	3	5	3	-	BLD	ARB0099,ENGL0099, PHYS103, MATH102
CE212	Digital Systems		3	5	3	-	F2F	ARB0099,ENGL0099,
CE2120	Digital Systems Lab	• •		4	-	3	BLD	ARB0099,ENGL0099, CE212 ^{co}
ENE211	Electrical Circuits I		3	5	3	-	F2F	ARB0099,ENGL0099, PHYS104
GERL201B1	German III	B1-Track	3	4	6	_	F2F	ARB0099,ENGL0099, GERL102B1 or GERL102B2
GERL201B2	B2-Track							ARB0099,ENGL0099, GERL102B2
MATH205	Differential Equations		3	5	3	-	F2F	ARB0099,ENGL0099, MATH102
		Total	16	28	18	3		

			econd Y					
Course ID	Course		ond Sem Credit Hours	ECTS		tact urs	Туре	Prerequisites / Corequisites
			Hours		Lect.	Prac.		
ME0214	Electronics for Mecl	lectronics for Mechatronics			3	-	F2F	ARB0099,ENGL0099, ENE211
ME0224	Computer Aided MA	2	4	-	6	BLD	ARB0099,ENGL0099, MATH102, CS116	
MECH2104	Dynamics	3	5	3	-	BLD	ARB0099,ENGL0099, MECH2102	
MECH0223	Thermofluids		3	5	3	-	BLD	ARB0099,ENGL0099, MATH205
ENE213	Electrical Circuits I L	ab	1	2	-	3	BLD	ARB0099,ENGL0099, ENE211
GERL202B1	German IV	B1-Track	3	6	9	-	F2F	ARB0099,ENGL0099, GERL201B1 or GERL201B2
GERL202B2	B2-Track							ARB0099,ENGL0099, GERL201B2
MATH203	Applied Math for Engineers		3	5	3	-	F2F	ARB0099,ENGL0099, MATH102
		Total	18	32	21	9		

		1	Third Ye	ar							
	First Semester										
Course ID	Course Name		Credit Hours	ECTS	Contact Hours		Туре	Prerequisites / Corequisites			
			nours		Lect.	Prac.		corequisites			
ME0312	Microcontrollers and le	4	6	3	3	BLD	CE212				
ME0344	Control Systems I		3	5	3	-	F2F	MECH2104, MATH205, ENE211, ME0224			
ME0348	Sensors		3	5	3	-	BLD	ENE211, ENE213, MATH205			
MECH0321	Thermofluids Lab		1	2	-	3	BLD	MECH0223			
GERL301B1	German V	B1-Track	3	6	9	-	F2F	GERL202B1 or GERL202B2			
GERL301B2	GERL301B2 B2-Track							GERL202B2			
IE0281	E0281 Technical Writing and Engineering Ethics			3	2	-	F2F	ENGL1001			
		Total	16	27	20	6					

	Third Year										
		Seco	ond Sem	ester							
Course ID Course Nam		ne	Credit Hours	ECTS		tact urs	Туре	Prerequisites /			
	Нои		Hours		Lect.	Prac.		Corequisites			
ME0345	Control and Vibration L	ab	1	2	-	3	BLD	ME0344			
ME0354	Actuators	3	6	3	-	F2F	ME0348				
ME0355	Sensors and Actuators I	ab	1	0	-	3	BLD	ME0348, ME0354 ^{co}			
ME0391	Field Training		0	6	160	HR	F2F	Dept. Approval, IE0281			
BM371	Numerical Methods for	Engineers	3	5	2	3	F2F	CS116, MATH203, MATH205			
CE331	Signals and Systems		3	5	3	-	BLD	ME0344			
GERL302B1	German VI	B1-Track	3	6	6	-	F2F	GERL301B1 or GERL301B2			
GERL302B2	B2-Track							GERL301B2			
ARB100	B100 Arabic			3	3	-	OL	ARB099			
		Total	17	33	17	9					

	Fourth Year									
First Semester										
Course ID	Course Name	Credit ECTS Hours		S Hours		Туре	Prerequisites /			
		Hours		Lect.	Prac.		Corequisites			
-	Technical Elective	3	5	3			-			
-	Technical Elective	3	5	3			-			
-	Technical Elective	3	5	3			-			
-	Technical Elective	3	5	3			-			
ME0548	Control Systems II	3	5	3	-	F2F	ME0344			
ME0551	E0551 Robotics 3 5 3 -					BLD	ME0344			
	Total	18	30	18	0					

Fourth Year							
Second Semester							
Course ID	Course Name	Credit Hours	ECTS	Contact Hours		Туре	Prerequisites / Corequisites
		Hours		Lect.	Prac.		corequisites
ME0491	International Internship ^d	12	30	-	-	F2F	Dept. Approval
	Total	12	30	0	0		

Prerequisite courses for the German year

Passing four out of the five following courses:

- ME0344 Control Systems I
- ME0354 Actuators
- ME0214 Electronics for Mechatronics
- CE331 Signals and Systems
- ME0312 Microcontrollers and IoT

^dCourses attended and/or passed during International Internship are not transferable.

Fifth Year								
First Semester								
Course ID	Course Name	Credit	ECTS	Contact Hours		Туре	Prerequisites /	
			Hours		Lect.	Prac.		Corequisites
ME0522	Hydraulics and Pneumatics		3	4	2	3	BLD	MECH0223
ME0571	Machine Intelligence I		3	5	3	-	F2F	ME0344, ME0348
ME0577	Automation and Industry 4.0		3	5	2	3	BLD	ME0344
ME0591	Graduation Project I		1	4	-	3	BLD	ME0491, MIN 132CH
-	University Elective		3	3	3			-
NE101	National Education		2	2	2			
NEE101	National Education in English		3	2	3	-	OL	-
IE0141	Engineering Workshop		1	4	-	3	BLD	
ENE312	Power Electronics		3	5	3	-	BLD	ME0214
Total 20 32 16 18								

Fifth Year							
Second Semester							
Course ID	Course Name	Credit Hours	ECTS	Contact Hours		Туре	Prerequisites /
				Lect.	Prac.		Corequisites
ME0561	Mechatronics Systems Design and	3	5	2	3	BLD	ME0312, ME0344,
	Interfacing			2			ME0354
ME0572	Machine Intelligence II	3	5	3	-	F2F	ME0571
ME0592	Graduation Project II	3	6	-	9	BLD	ME0591
IE0361	Engineering Economics	3	5	3	-	OL	IE0121
-	University Elective	3	3	3			-
ENE314	Power Electronics Lab	1	2	-	3	BLD	ENE312
MILS100	Military Science	3	2	3	-	OL	-
Total 19 28 14 18							

VI. Compulsory Courses Offered by Mechatronics Department

ME0111 Computer Aided Engineering Drawing

The use of computer aided software in drawing such as AutoCAD. Geometric construction. Orthographic and Isometric projections; Sketching, sectioning, dimensioning and layering. Model layout (wire-frame, surface, and solid modeling), plotting to scale, blocks and attributes, Introduction to descriptive geometry, perspective drawing, engineering applications.

Prerequisites: CS116

4 ECTS

4 ECTS

6 ECTS

ME0214 Electronics for Mechatronics 3 Cr Hr (3,0) 5 ECTS Introduction to (semiconductor) electronic devices. Semiconductor p-n junction, the transistor. Analysis and synthesis of linear and nonlinear electronic circuits containing diodes and transistors. Elementary analog circuit analysis. Fundamentals of transistors and voltage amplification. Characterization of MOS transistors for circuit simulation. Common-source amplifiers, MOSFET source-follower buffer stage, differential amplifier stage, and MOSFET current sources. Operational amplifiers. Development of a Basic CMOS Operational amplifier.

Prerequisites: ARB0099, ENGL0099, ENE211

2 Cr Hr (0,6)

ME0224 Computer Aided MATH for ME

Introduction to Matlab/Simulink, introduction to LabVIEW, introduction to Python with engineering applications including practical exercises.

Prerequisites: ARB0099, ENGL0099, MATH102, CS116

4 Cr Hr (3,3)

2 Cr Hr (0,6)

ME0312 Microcontrollers and IoT

Embedded systems characteristics. Microprocessors versus micro-controllers. Micro-controller characteristics. General-purpose micro-controllers. Interrupts, counters/timers, Input/output ports. Micro-controller programming. Instruction set. Program development and use of assemblers. Memory maps and addressing modes. Digital to analogue and analogue to digital conversion in micro controllers. Data acquisition and distribution. Serial and parallel communications. Real-time system and its constraints. Interfacing to external devices. Power consumption consideration. Introduction to the Internet of Things (IoT); IoT concepts, IOT hardware and software, IOT communication and networking protocols, as well as the integration with embedded systems in networked control systems. Experiments using both simulation and practical implementation of the basic building blocks of a micro-controller including timers, counters, PWM generation, I/O techniques and requirements, A/D conversion, and serial communications. Experiments to explore the system design process using the hardware-software co design process as well as the use of IOT in control and communication networks

Prerequisites: CE212

3 Cr Hr (3,0) 5 ECTS

Modeling of dynamic systems, linearization of nonlinear systems, transient response, transfer function, block diagrams, steady state error and stability, root locus, PID control, lead, lag, and leadlag control, Bode plots, and Nyquist stability criterion.

Prerequisites: MECH2104, MATH205, ENE211, ME0224

1 Cr Hr (0,3)

ME0345 Control and Vibration Lab

Free vibration of simple mass-spring systems, free damped response of simple mass-spring-damper systems, static and dynamic balancing, harmonically excited systems, frequency response of the harmonically excited systems, frequency response with base excitation, introduction to Control, mass spring-damper system simulation, PID Controllers, simple and inverted pendulum control, fluid level and temperature control, servo systems, and twin rotor control.

Prerequisites: ME0344

ME0344 Control Systems I

and statistical analysis of experimental data. The use of Op-Amp circuits in instrumentation. Introduction to sampled data analysis, data acquisition techniques, digital to analogue and analogue to digital conversion. Overview of sensors and transducers including physical principles, technical characteristics, application scenarios. Integration of sensors into PLC, LABVIEW and computer-based solutions including processing and monitoring techniques with emphasis on practical/industrial applications.

Introduction to instrumentation, units, dimensions and standards. Detailed analysis for error in measurements

Prerequisites: ENE211, ENE213, MATH205

3 Cr Hr (3,0) 6 ECTS

Energy conversion. Conventional DC motors including Brushed/Brushless DC Motors, DC Servo Motors and Stepper Motors. DC Motor drives including power amplifiers and PWM amplifiers for position-controlled actuators. AC Motors including synchronous and induction motors: analysis, performance characteristics, and applications. Overview of AC Motor Drives and Speed Control. Interfacing actuators to computer-based controllers including PLC and LABVIEW.

Prerequisites: ME0348

0 ECTS

1 Cr Hr (0,3)

Measurements with different micrometers & Vernier measuring instruments, angular measurements, roundness & concentricity of cylindrical work pieces, tool maker's microscope, optical projectors, surface measurements. Analysis of experimental data and error estimation. Basic electrical measurement and sensing devices: physics of electric, magnetic, chemical sensors, displacement, area, pressure, flow, temperature, thermal and transport properties, force, torque and strain measurements. Smart sensors and networking of sensor systems. Data acquisition and processing. Transformer characteristics. Experiments for interfacing sensors and actuators with computer-based solutions. Testing and operational characteristics of different types of DC motors. Testing and operational characteristics of alternators. Testing and operational characteristics of induction motors. Modeling and simulation of electrical machines using Simulink with external mechanical loads.

Prerequisites: ME0348 Corequisites: ME0354

ME0391 Field Training	0 Cr Hr (0,0)	6 ECTS
160 hours of training at a company in Jordan.		
	Prerequisites IE0281, Dep	ot. Approval
ME0491 International Internship	12 Cr Hr (3,0)	30 ECTS
Twenty-weeks of internship at a company in Germany.		
	Prerequisites: Dep	ot. Approval

ME0522 Hydraulics and Pneumatics

ME0548 Control Systems II

Pneumatic and hydraulic components; compressor, cooler, compressed-air containers, filters, valves, pumps, piping system basic circuits in pneumatics and hydraulics, design and simulation of pneumatic and hydraulic circuits, servo pneumatics and servo hydraulics, basics of servo drives, assembling, measuring techniques.

Prerequisites: MECH0223

5 ECTS 3 Cr Hr (3,0)

3 Cr Hr (2,3)

State-space modeling of multi-variable systems, stability, sensitivity, controllability, and observability, optimal observers, Kalman filter, linear quadratic regulators, digital control systems, z-transform, stability, transient

ME0354 Actuators

ME0348 Sensors

DC and AC Electromechanical Actuators. Principles for Electromagnetic actuating circuits, Torque production, and

ME0355 Sensors and Actuators Lab

3 Cr Hr (3,0) **5 ECTS**

response, digital cascade compensators.

ME0551 Robotics

Planar and spatial transformations, forward and inverse kinematics, trajectory planning, robot dynamics, robot control (linear, nonlinear, and force control), mobile robots and navigation. Robot control architectures and programming

ME0561 Mechatronics Systems Design and Interfacing

Design and planning of the system, purchase (virtual) of different components, sensors and actuator units, machine parts, devices, electric, mechanical, pneumatic, hydraulic components, PLC and control units, assembly, commissioning, interfacing, software and programming, calibration, standard checks, test operation, troubleshooting, documentation, service and maintenance, safety, cost, delivery and disassembly and packing. Course to include communication protocols USB, I2C, Serial, etc...

ME0571 Machine Intelligence I

This course introduces the student to intelligent control theory. Focus on highlighting the differences between classical and intelligent control techniques. The course material is divided in two main parts: Artificial Neural Networks and Fuzzy Logic Control techniques. Emphasis is provided for intelligent control applications of mechatronic systems. This include Dynamic system identification using neural networks and neuro-fuzzy systems as well as simulating different types of intelligent controllers such as neural, fuzzy, and neuro-fuzzy controllers for Mechatronic system applications and designs. The course includes implementing intelligent modeling and control algorithms using MATLAB Simulink and MATLAB Fuzzy and Neural Network Toolboxes. Introduction to intelligent adaptive control using reinforcement learning will be highlighted and discussed. A major hands-on project is integrated within the structure of the class to provide hands-on experience for students on mechatronic systems using methods presented in the class.

Prerequisites: ME0344, ME0348

ME0572 Machine Intelligence II

Artificial Intelligence in Computer Vision with emphasis on visual recognition tasks such as image classification and object detection for mechatronic systems. Applications span examples in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Recent developments in neural network approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. The course provides a deep dive into details of neural network based deep learning methods for computer vision. Students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. Focus will be given to learning algorithms, neural network architectures, and practical engineering tricks for training and fine-tuning networks for visual recognition tasks with emphasis on state of art mechatronic Systems including ground, mobile robots, and manufacturing systems.

Prerequisites: ME0344

ME0577 Automation and Industry 4.0

Introduction to production concepts, serial production lines, assembly systems and types of automation. Programmable Logic Controllers (PLC); Theoretical and applied material, including: application and hardware composition of programmable logic controllers; functional programming blocks such as logic gates including AND, OR etc. as well as latches, timers, counters, and analog blocks; design approaches based on Boolean

3 Cr Hr (3,0) 5 ECTS

Prerequisites: ME0344

5 ECTS

5 ECTS

Prerequisites: ME0344

3 Cr Hr (3,0)

Prerequisites: ME0312, ME0344, ME0354

3 Cr Hr (2,3)

3 Cr Hr (3,0) 5 ECTS

3 Cr Hr (2,3)

5 ECTS

and structured logic, state machines, flowcharts; programming methodologies including: ladder diagrams, blocks and text-based. Concepts and definitions for Industry 4.0 approaches, Industry 4.0 and the Future of Production. Smart Factory Architecture and overview of Smart Production Systems and Integrated production technology. Enabling technologies for Industry 4.0. Industrial Internet of Things (IIoT) for production systems. The class will address challenges of security and vulnerability, authentication and authorization, data/device security and cloud computing.

Prerequisites: ME0571

4 ECTS

ME0591 Graduation Project I

The first part of a team-based one-year senior design project in the field of mechatronics engineering.

Prerequisites: ME0491, MIN 132CrHr

1 Cr Hr (0,3)

ME0592 Graduation Project II

The second and final part of a team-based one-year senior design project in the field of mechatronics engineering.

Prerequisites ME0591

3 Cr Hr (0,9)

6 ECTS

Prerequisites: BSC001

VII. Elective Course Offered by Mechatronics Department

ME0402 Advanced Electronics 3 Cr Hr (3,0) 5 ECTS Physical principles and operational characteristics of advanced semiconductor electronic devices with emphasis on metal-oxide systems, bipolar, high-electron mobility, and field-effect transistors. Topics also include quantum point contact and tunneling devices. Advanced background in solid-state electronic devices intended to help students to continue advanced research in the variety of different branches of semiconductor microelectronics. Prerequisites: BSC001

ME0403 Real-Time Computer Control Systems

Review of continuous control. Dynamic response, Feedback properties, Root locus and frequency response designs. Introduction to digital control. Discrete system analysis. Difference equations, discrete transfer functions, z-transform, Discrete signal analysis. Discrete approximation of differential equations, Effects of Sampling, PID control in discrete systems. Sampled-data systems. Sample & Hold, Spectrum of sampled signals, Data extrapolation, Block diagram analysis. Discrete equivalences. Numerical integration, Pole & zero mapping, Hold equivalence. Design using transforms techniques. Design by emulation, Design by root-locus, Design by frequency response. Implementation of Direct Digital Control algorithms. Implementation of the basic PID algorithm, Synchronization of the control loop, Timing Considerations in Implementation of Control Loops. Hard and soft real-time systems, Real-time scheduling theory, Deadlines in real-time control systems.

Prerequisites: BSC001

5 ECTS

ME0404 Digital Control Systems

Discrete time control theory, z-transform, sampling and hold operations, A/D and D/A conversions, modeling of digital systems, response evaluation; stability, basis of digital control, modeling of sampled-data systems, system identification using the batch least squares method, time response characteristics, stability analysis techniques, discrete-time approximation of continuous-time controllers, classical design methods based on root locus and frequency response, and modern design methods including state and observer feedback design.

Prerequisites: BSC001

3 Cr Hr (3,0) 5 ECTS

3 Cr Hr (3,0)

Dynamics of mechanical, food, beverage and chemical processes; system capacity; resistance; piping complexes; characteristics and dynamics of control valves; control of pressure, speed, PH, mixing ration, Boolean algebra and fluid logic, sequential circuits, process time constants; proportional, reset, and derivative control actions; feedforward and cascade control; direct digital control.

Prerequisites: BSC001

ME0406 CNC and Manufacturing Control

Concepts and benefits of computer integrated manufacturing (CIM), design for manufacturing, computer-aided design, process planning, manufacturing (computer numerical control parts programming), and inspection, robots in CIM, production planning and scheduling in CIM, system integration.

Prerequisites: BSC001

ME0407 Linear Systems

Review of matrix algebra. State-space description of dynamic systems: linearity, causality, time- invariance, linearization. Solution of state-space equations. Transfer function representation. Discrete-time models. Controllability and observability. Canonical forms and minimal-order realizations. Stability and pole placement. Linear quadratic control. Observer design.

ME0405 Process Control

5 ECTS

3 Cr Hr (3,0) 5 ECTS

3 Cr Hr (3,0)

3 Cr Hr (3,0) 5 ECTS

ME0408 Mobile Robots

Introduction to variety of autonomous mobile robots, wheeled robots, robot platforms and modeling, control structures, sensing & estimation, localization, motion planning and multi-robot systems. Students will build, experiment with, and compete with mini-mobile robots.

Prerequisites: BSC001

5 ECTS

5 ECTS

5 ECTS

3 Cr Hr (3,0)

3 Cr Hr (3,0)

3 Cr Hr (3,0)

ME0409 Autonomous Systems

Introduction to essential aspects of autonomous systems; mobility, flexibility, adaptability, intelligence, modeling, control, sensing and estimation, sensor fusion and data mining, localization and navigation, motion and action planning, scheduling and applications.

Notations and definitions, structure of mechatronics systems, modeling and simulation of mechanical, electrical, hydraulic, pneumatic and thermal subsystems, various mathematical forms of model descriptions, systems of differential equations, transfer functions, state space representations, multi- port systems, merging of models of subsystems into a model of a mechatronic system, linear graphs, bond graphs, multi-energy domain models, introduction and application of simulation software tools

Prerequisites: BSC001

ME0410 Process Automation

Definition of industrial processes, structures and layout design, hierarchical concepts, comprehensive view of material, energy and information flow; structure, principles of task planning, placing and final reporting, use of knowledge-based systems for planning and optimization, modeling of product data, use of distributed data base systems.

Prerequisites: BSC001

ME0411 Industrial Robotics3 Cr Hr (3,0)5 ECTSBasic robotics technology, application in manufacturing, manipulators and mechanical design, programming
languages, intelligence, and control.5 ECTS

ME0412 Mechatronics of Smart Materials3 Cr Hr (3,0)5 ECTSProperties of smart materials, classes of smart materials, shape memory alloy materials, piezoelectric
materials, smart sensors, smart actuators, and mechatronics of smart materials: modeling, design, digital
control, and their applications.5 ECTS

ME0413 Mechatronics Projects

Implementation of a mechatronics projects through all stages of modeling, simulation, control, component interface, signal conditioning, subsystem integration, documentation and presentation.

Prerequisites: BSC001

Prerequisites: BSC001

Prerequisites: BSC001

5 ECTS

5 ECTS

ME0415 Smart Sensors

Active sensors: Piezo sensor for force, pressure and vibration, electrodynamic sensors for speed and rotation, photodiodes and thermocouples. Passive sensors: resistive sensors, capacitive sensors, inductance sensors. Analog data processing: operational amplifiers, amplification, addition, multiplication, division, integration and derivation, filtering. Digital data processing: data acquisition, multiplexing, digital filters, programmable devices. A/D-converter: bit-number, resolution, sampling rate, bipolar- and unipolar inputs. D/A-converters: flash, Weighing converter, Dual slope converter IOs, data lines.

ME0417 Micro-Electromechanical Systems

Introduction to micromachining processes; mechanical properties of materials used in micromechanical

. . .

3 Cr Hr (3,0)

3 Cr Hr (3,0)

3 Cr Hr (3,0)

Prerequisites: BSC001

systems; design and fabrication of free standing structures; sacrificial and structural layers; finite element
modeling; micromechanical components; solid lubrication of microbearings; special techniques: double-side
lithography, anodic bonding, electro-chemical drilling, deep etching, LIGA process, laser microfabrication;
influence of IC fabrication processes on the mechanical properties; applications in microdevices; simulation
and packaging.

ME0418 Nano Systems

Prerequisites: BSC001

5 ECTS

3 Cr Hr (3,0)

ME0418 Nano Systems	3 Cr Hr (3,0)	5 ECI S
Assembly, manipulation and control of materials at the atomic and molect devices and systems that have novel properties and functionality.	ular scale to fabricate s	tructures,
	Prerequi	sites: BSC001
ME0419 Autotronics	3 Cr Hr (3,0)	5 ECTS
Electronic control systems and component in motor vehicle sub-systems, m and sub-systems, electrical and electronic principles, faults and diagnosis o engine management, fuel injection, electronics, transmission, stability, and A	f automotive electronic	
	Prerequi	sites: BSC001
ME0420 Special Topics in Electrical and Electronics Engineering	3 Cr Hr (3,0)	5 ECTS
A course on a special topic in Electrical and Electronics.		
	Prerequi	sites: BSC001
ME0421 Special Topics in Control Engineering	3 Cr Hr (3,0)	5 ECTS
A course on a special topic in Control Engineering.		
	Prerequi	sites: BSC001
ME0422 Special Topics in Robotics and Automation	3 Cr Hr (3,0)	5 ECTS
A course on a special topic in Robotics and Automation.	Prerequi	sites: BSC001
ME0423 Special Topics in Computer and Digital Sciences	3 Cr Hr (3,0)	5 ECTS
A course on a special topic in Computer and Digital Sciences.		
	Prerequi	sites: BSC001
ME0424 Special Topics in Mechatronics Technology	3 Cr Hr (3,0)	5 ECTS
A course on a special topic in Mechatronics Technology.		
	Prerequi	sites: BSC001
ME0425 Special Topics I	3 Cr Hr (3,0)	5 ECTS
A course on a special topic in mechatronics.	Prerequi	sites: BSC001
ME0426 Special Topics II	3 Cr Hr (3,0)	5 ECTS
A course on a special topic in mechatronics.		
	Prerequi	sites: BSC001

Course Offered by Other Departments VIII.

IE0121 Probability and Statistics 3 Cr Hr (3,0) 5 ECTS Descriptive statistics, probability concepts, discrete and continuous random variables and distributions, joint probability distributions, covariance and correlation of random variables, point and interval estimation for single sample, sampling distributions, and statistical inference for single sample.

Prerequisites: MATH101

1 Cr Hr (0,3) 4 ECTS

General safety, materials and their classifications, measuring devices and their accuracy, theoretical background and practical exercises including, carpentry, welding, mechanical fasteners, drills, lathes, milling machines, and sheet-metal working.

2 Cr Hr (2,0) **IE0281** Technical Writing and Engineering Ethics 3 ECTS Technical communication, process of writing, presentations, relationship between ethical standards and technology, analysis of ethical dilemmas.

Prerequisites: ENGL1001

3 Cr Hr (3,0) 5 ECTS

Principles of engineering economics, cost concepts, time value of money, interest formula, depreciation models, rate of return, cash flow, project evaluation methods, replacement analysis, break even analysis, economic studies for decision making.

Prerequisites: IE0121

4 Cr Hr (3,3) 6 ECTS Overview of typical manufacturing processes (Casting, forming, machining, joining, and finishing). Inhomogeneous deformation and residual stresses, Triaxial stresses and yield criteria, temperature rise, and process efficiency. Failure and fracture, surface properties and friction theories. Metal casting, heat transfer and solidification time. Bulk deformation processes (Forging, Rolling, Drawing, Extrusion), selected topics in joining and metal cutting processes. Economics and selection of manufacturing processes.

Prerequisites: Dept. Approval

3 Cr Hr (3,0) Vector mechanics of forces and moments and resultants, equilibrium of particles and rigid bodies in two and three dimensions, structural analysis, geometric properties, distributed forces, stress and strain, mechanical properties of materials, axial load, torsion, bending, transverse shear, combined loadings, stress and strain transformations, design of beams, column buckling.

Prerequisites: ARB0099, ENGL0099, PHYS103, MATH102

MECH0223 Thermofluids

transfer, First Properties of pure substances, Energy law of Thermodynamics, Second law of Thermodynamics, Basic concepts of fluid mechanics, Bernoulli and Energy equation, Momentum equation, Flow in pipes, Mechanisms of Heat transfer.

Prerequisites: ARB0099, ENGL0099, MATH205

IE0344 Manufacturing Processes

IE0361 Engineering Economics

IE0141 Engineering Workshop

MECH2102 Statics and Strength

3 Cr Hr (3,0)

5 ECTS

MECH0321 Thermofluids Lab

MECH2104 Dynamics

Measurement of thermal conductivity, forced convection heat transfer, measurement of specific heat ratio, flow through nozzles, losses in pipes and fittings, hydrostatic pressure, impact of water jet, flow visualizations, performance of hydraulic positive displacement pumps.

Prerequisites: MECH0223

2 ECTS

5 ECTS 3 Cr Hr (3,0)

Kinematics and kinetics of particles, planar kinematics and kinetics of rigid bodies, Newton's Second Law, Principle of work and energy, Principle of Impulse and momentum.

Prerequisites: ARB0099, ENGL0099, MECH2102

1 Cr Hr (0,3)

MECH0332 Machine Design 3 Cr Hr (3,0) 5 ECTS Introduction to design process, design considerations, stress analysis and deflection of mechanical elements, energy methods, static strength and failure theories, fatigue strength and failure theories, shafts, nonpermanent joints, mechanical springs, and rolling bearings, CAD software, stress analysis using FEM codes, kinematics simulations, surface generation, 3D printing.

Prerequisites: MECH2104, MECH2102

5 ECTS MECH0402 Multi-Body Dynamics 3 Cr Hr (3,0) Principles of kinematics and dynamics in spatial motion, constraint equations describing various types of spatial kinematic joints, algorithms for automatic generation of the constraint equations, techniques for automatic generation of the spatial equations of motion.

Prerequisites: Dept. Approval

MECH0403 Machine Dynamics 3 Cr Hr (3,0) Force analysis of machinery, resonance (symptoms, tests, fixes), rotors dynamics, and dynamic balance of machinery, analytical determination of unbalance, dynamic behavior of drives and machine frames as complex systems, typical dynamic effects, such as the gyroscopic effect, damping and absorption, shocks.

Prerequisites: Dept. Approval

3 Cr Hr (3,0) 5 ECTS Mathematical techniques for linear system vibrations, review of vibrations of single-degree-of freedom systems, vibrations of multi-degree-of-freedom systems, small oscillation theory, free vibration eigenvalue problem, undamped system response, viscously damped systems, vibrations of continuous systems, modes of vibration of strings, bars, and beams.

Prerequisites: MECH2104

MECH0531 Mechanical Vibrations

5 ECTS

25

2 ECTS

IX. Courses offered by Other Schools

short meaningful sentences, listening to short conversations.

ARB0099 Elementary Arabic 3 Cr Hr (3,0) 3 ECTS This course aims to develop student's ability to read, comprehend, literary analyze, grammatically analyze, linguistically analyze, poetically analyze, and rhetorically analyze texts properly. The course also includes a selection of Arabic literature in poetry and prose representing different literary ages, in addition to several common forms of writing such as scientific article, news article, and others.

comprehension, and taste. This is achieved through the study of selected texts with many implications that raise

tenses, model verbs, adverbs, short dialogues, reading simple material and answering short questions, writing

Prerequisites: Placement test

3 Cr Hr (3,0) 3 ECTS This course aims to improve the student's competence in the various linguistic skills in terms of reading,

issues in spelling, grammar, composition, meaning, and inference, and the use of an old and modern thesaurus. Prerequisites: ARB099

3 Cr Hr (3,0) 3 ECTS

Students will focus on English at an elementary level concentrating on the receptive skills of reading and listening, and the productive skills of writing and speaking. These will include such things as independent clauses, verb

Prerequisites: Placement test

3 Cr Hr (3,0) 3 ECTS

Students will focus on English at a pre-intermediate level concentrating on the receptive skills of reading and listening and the productive skills of writing and speaking. These will include such things as comparatives and superlatives, quantifiers, possessive adjectives and pronouns, vocabulary building, role-play activities for speaking, reading comprehension and writing short descriptive paragraphs.

Students will focus on English at an upper-intermediate level concentrating on the receptive skills of reading and listening and the productive skills of writing and speaking. Model verb review, silent letters and proper pronunciation, jobs and careers, requests and offers, more phrasal verbs with vocabulary building, relative clauses and relative pronouns, narrative tenses for writing exercises, wishes and regrets, reading and comprehending longer passages with direct and inference questions of medium difficulty, hypothesizing, and writing fully developed descriptive, argumentative and analytical essays of 350 words.

Prerequisites: ENGL0099

emphasis on argumentation and persuasion working both independently and cooperatively to gather, evaluate, and synthesize necessary information. Class activities include interactive lectures, small group and class discussions, informal debates, peer feedback, individual presentations, focused listening exercises and focused viewing exercises as well as assorted reading, writing, and grammar assignments. There will be some poetry analysis together with reading and understanding a short story and a drama using basic literary terms and concepts.

Prerequisites: ENGL1001

3 Cr Hr (3,0)

3 Cr Hr (3,0)

MILS100 Military Science

History of the Jordanian Arab Army. United Nations Peace Keeping Forces. Preparation of the nation for defense and liberation. History of the Hashemite Kingdom of Jordan and its development.

NE101 National Education

In a context of striving towards democracy like the one Jordan enjoys today, the meaning and practice of active

ENGL1001 Upper-Intermediate English

ARB100 Arabic

ENGL0098 Elementary English

ENGL0099 Intermediate English

ENGL1002 Advanced English

3 ECTS

Prerequisites: ENGL098

3 Cr Hr (3,0) 3 ECTS

3 Cr Hr (3,0) Students will focus on English at an Advanced level. Students will analyze and produce 2 – 3 page essays with an

and responsible citizenship becomes more crucial. It is often argued that democracy requires "democrats" to flourish, and become well established. Democrats are those women and men who recognize pluralism, inclusion, positive engagement, and participation as the main values that govern their interaction with the state as citizens and with each other as diverse people of different interests. In this course you will be able to understand your rights and responsibilities as Jordanian citizen expand your knowledge about the frameworks, and processes that regulates citizen-state relationships as well as the basic necessary skills for you to practice your citizenship rights in a civic manner.

DES101 Arts' Appreciation

An introductory course designed for non-art students to give them the basic knowledge of arts and simple approaches to the understanding of the history, development, elements, criticism, esthetics and materials of different art forms (visual, aural and performing arts). A comparative approach between the different arts is given to enhance the students' global understanding of arts and to give them the ability to look at art works and form their own opinions. The course is combined with examples of audio and visual arts.

Prerequisites: ENGL0099, ARB0099

3 ECTS

3 ECTS

3 Cr Hr (3,0)

3 Cr Hr (3,0)

EI101 Leadership and Emotional Intelligence

In this course, students will be introduced to the concept of Emotional Intelligence as a means to improve selfmanagement and relationship management. The operative concepts are applied to social, family, academic and professional relationships with an emphasis on leadership implications. The majority of the curriculum is based upon the book by Daniel Goleman entitled: "Leadership: The Power of Emotional Intelligence," and covers leadership styles and their appropriate applications, the emotional intelligence model, and neurological aspects of the limbic system. The class is a lecture format which encourages student participation

Prerequisites: ENGL0099

IC101 Intercultural Communications

This course is designed to provide prospective students (whose majors have an international flavor) with tools that offer powerful possibilities for improving the communication process. We will examine the process of sending and receiving messages between people whose cultural background could lead them to interpret verbal and nonverbal signs differently. We will learn about the diversity of these cultural differences and at the same time learn how we might overcome them. Our efforts to recognize and surmount cultural differences will hopefully open up business opportunities throughout the world and maximize the contribution of all the employees in a diverse workforce.

Prerequisites: ENGL0099

E101 Sports and Health

SFTS101 Soft Skills

The course focuses on providing students with information related to Sport, fitness and health culture, Voluntary work Nutrition, First Aid. It covers also Special physical preparation and general sports cultural issues.

Prerequisites: ARB0099

SE301 Social Entrepreneurship and Enterprises

This course will serve as an introduction to the field of social entrepreneurship and social enterprises. Through lectures, field visits, analyses of relevant literature, case studies and exercises, this course will explore social entrepreneurship's potentials, opportunities and limitations. The topics will cover Defining Social Entrepreneurship. Contextualizing Social Entrepreneurship (need, motives, forms, criteria). Role of Leadership, Creativity and Innovation. Locating SE on the profit/non-profit continuum. SE in the larger fields of development, social change, community activism. Social Enterprises (Missions, Markets, Finances). Ethical business and corporate social responsibility.

Prerequisites: ENGL0099

3 Cr Hr (3,0) 3 ECTS

This course is designed to help develop strong oral and written communication skills. The student will be given opportunities to practice writing and editing professional correspondence and technical reports. Additionally, the student will compose and deliver oral presentations. Assignments will include the use of inductive and deductive approaches to conveying a variety of messages. The course emphasis the use of software tools to prepare 26

3 Cr Hr (3,0)

3 ECTS

3 Cr Hr (3,0) 3 ECTS

3 Cr Hr (3,0) 3 ECTS

presentations, stress management, confidence, and sensitivity to others. It also stresses on resume writing and conducting interviews.

Prerequisites: ENGL0099

BE302 Business Entrepreneurship 3 Cr Hr (3,0) 3 ECTS The course focuses on critical skills necessary to develop appropriate financing strategies for new venture creation and growth. Students will use case studies and team projects in course studies. Three primary topics are covered: first, an overview of the entrepreneurial finance process and involved players; second, performing business valuations; and third, securities law with emphasis on developing term sheets and private placement memorandums. Student teams will complete a valuation and mock securities offering for an existing small to midsize business. Financial valuations and terms sheets developed by student teams will be presented to a panel of

venture capital professionals for evaluation and critique.

Prerequisites: ENGL0099

TW303 Technical and Workplace Writing 3 Cr Hr (3,0) Technical and Workplace Writing course focuses on essentials; it introduces students to professional and technical writing through a straightforward structure, adding knowledge while practicing different forms and skills. Since this course is a practical one, the course offers the "how" (instructions) and the "what" (examples) with discussion topics and exercises designed to make instruction straightforward. Students are exposed to certain genres, such as web page design, summaries, proposals, user guides, and job application materials. This is why this course is designed with a student/worker in mind, who would greatly benefit from the techniques of writing presented throughout the course.

Prerequisites: ENGL0099

GERL101B1 German I B1-Track

Can understand and use familiar, everyday expressions and very simple sentences, which aim at the satisfaction of specific needs. Can introduce oneself, and others, and ask others questions to themselves - e.g. where they live, which people they know or what kind of things they have - and can give answers on questions of this kind. Can communicate on a basic level if those involved with him/ her in a conversation speak slowly and clearly and are willing to help.

GERL102B1 German II B1-Track

Can understand sentences and frequently used expressions if those are connected with things of immediate meaning (e.g. information to the person and to the family, buying, work, closer environment). Can communicate in simple, routine situations, with the purpose of a simple and direct exchange of information about familiar and common things. Can describe with simple means their own origin and training, direct environment and things that are in connection with direct needs.

Prerequisites: GERL101B1

6 ECTS

4 ECTS

GERL201B1 German III B1-Track

Can understand the main points if no dialect is used and if it concerns familiar things about work, school, spare time etc. Can master most situations, which one encounters on journeys in a German speaking area. Can express oneself simply and coherently about familiar topics and areas of personal interest. Can report experiences and events, describe dreams, hopes and goals and give short reasons or explanations about plans and opinions.

Prerequisites: GERL102B1

3 Cr Hr (9,0) 6 ECTS Can understand the main contents of complex texts, as well as concrete and abstract topics; even discussions between specialists in his/ her own special field. Can communicate spontaneously and fluidly a normal discussion with native speakers, without larger effort on both sides. Can express oneself clearly, in detail in a broad spectrum of topics, describe a point of view to a current question, and indicate the pro and cons of different possibilities.

Prerequisites: GERL201B1

GERL202B1 German IV B1-Track

3 Cr Hr (9,0)

3 Cr Hr (6,0)

6 ECTS 3 Cr Hr (9,0)

3 ECTS

MATH102 Calculus II

MATH0099 Pre-Math

MATH101 Calculus I

5 ECTS

Can understand and seize implicit meanings of a broad spectrum of demanding, longer texts. Can express oneself spontaneously and fluidly, recognizing words without having to search for words frequently. Can use the language

6 ECTS

5 ECTS

6 ECTS

and detailed, to complex subjects and use appropriate different means for linkage of texts. Prerequisites: GERL202B1

Prerequisites: GERL301B1

3 Cr Hr (6,0) 6 ECTS

3 Cr Hr (9,0)

3 Cr Hr (3,0)

German VI is a strongly practice-oriented course in preparation for your German Year. The course includes the modules "Intercultural Communication", "Job Application Training" and the technical languages. In part, it includes a special support program for students who did not achieve their language goal of a full B1 certificate in German V

effectively and flexibly in social and vocational life or in training and study. Can express oneself clearly, structured

CHEM103 General Chemistry

GERL301B1 German V B1-Track

GERL302B1 German VI B1-Track

Stoichiometry of formulas and equations. Gases and the kinetic-molecular theory. Quantum theory and atomic structure. The components of matter. The major classes of chemical reactions (precipitation, acid-base, oxidationreduction, and reversible reactions). Thermodynamics: energy flow and chemical change. Quantum theory and atomic structure. Electron configurations and chemical periodicity. Kinetics: rates and mechanisms of chemical reactions. Equilibrium: The extent of chemical reactions. Acid-base equilibria.

CS116 Computing Fundamentals

3 Cr Hr (3,0) Basic computer skill; Programming concepts; algorithms: data types, arithmetic, logical, relational, Boolean, and assignment operators, simple input and output statements; programming control structures; data structures: single and multidimensional arrays; character strings; functions; pointers; file structures and representation; 3hours lab session every week to enhance hands-on experience on topics that are theoretically covered in the course using Gnu C compiler on a Solaris/Sun environment

CS1160 Computing Fundamentals Lab

0 ECTS Basic computer skill; Programming concepts; algorithms: data types, arithmetic, logical, relational, Boolean, and assignment operators, simple input and output statements; programming control structures; data structures: single and multidimensional arrays; character strings; functions; pointers; file structures and representation; 3hours lab session every week to enhance hands-on experience on topics that are theoretically covered in the course using Gnu C compiler on a Solaris/Sun environment.

Graphs of Functions, Indeterminate Forms and L'Hopital Rule. Antiderivatives, Definite integrals, Fundamental Theorem of Calculus, Integration by Substitutions, Integration by Parts, Applications of integration: Area between

curves, Arc length, Volume and Surface Area of Solids of Revolution.

Corequisites: CS116

3 ECTS

3 Cr Hr (3,0)

Real numbers and their properties, Solutions of equations and inequalities, Functions, Domain of functions, Operations on functions, Polynomials, Zeros of polynomials, Power, Exponential, Logarithmic, and Trigonometric functions and their graphs, Applications of trigonometry, Analytic Geometry: Lines, circles and parabolas.

Prerequisites: Placement test

3 ECTS

Computation of limits, Continuity, Asymptotes, The Derivative, Computation of derivatives, the product and quotient rules, The Chain Rule, Derivatives of Trigonometric, Inverse Trigonometric, Exponential, Logarithmic, and Hyperbolic Functions. Applications of Differentiation: Increasing and Decreasing Functions, Extrema of Functions,

3 Cr Hr (3,0)

Review of functions, functions, Inverse functions, Inverse trigonometric functions, the concept of limits,

Prerequisites: MATH0099

28

3 Cr Hr (3,0)

1 Cr Hr (0,3)

5 ECTS

Review of Integration, Integration by Trigonometric Substitutions, Integration using Partial Fractions, Improper Integrals. Vectors in 2 and 3 Spaces, The Inner and Cross Products of vectors. Polar Coordinates, Graphs and Arc length of Polar curves. Functions of Several Variables; Domain, Limits, and Continuity. Partial Derivatives, The Chain Rule, The Gradient and Directional Derivatives, Extrema of Functions of Several Variables and Lagrange multipliers. Double Integrals, Area of Plane Region and Volumes of Solids using Double integrals, Triple Integrals, Cylindrical and Spherical Coordinates, Triple Integrals using Cylindrical and Spherical Coordinates.

Prerequisites: MATH102

5 ECTS

5 ECTS

5 ECTS

3 Cr Hr (3,0)

3 Cr Hr (3,0)

coordinates with emphasis on Spherical and Cylindrical coordinates, transformations between different coordinate systems, vector differentiation. Matrices and linear equations; Matrices and Linear Operators; Determinants, Eigenvalues and eigenvectors. Complex Numbers and Complex Variables; Representation of complex numbers, Powers and roots of complex numbers, Functions of a complex variable. Review of Infinite Series; Infinite series of constant terms, Convergence tests, Power series and radius of convergence, Taylor, and Maclaurin series and Fourier series.

Vector analysis in Cartesian coordinates. General Curvilinear Coordinates, Vector calculus in general curvilinear

MATH203 Applied Mathematics for Engineers

Ordinary differential equations; Sturm-Liouville theory, properties of Special Functions, Solution methods including Laplace transform, and Fourier transform. Eigenvalue problems and expansions in orthogonal functions. Partial differential equation: classification, separation of variables, solution by series and transform methods. Models in Applied Mathematics; Applications to illustrate typical problems and methods of applied mathematics in solid and fluid mechanics, fields of physics, deformation and vibration, wave phenomena, diffusion phenomena, heat conduction, chemical and nuclear reactors, and biological processes.

Prerequisites: MATH102

Prerequisites: MATH102

PHYS103 Physics I

Physics and measurement. Motion in one dimension. Vectors. Motion in two dimensions. Force and motion. Kinetic energy and work. Potential energy and conservation of energy. Linear momentum and collisions. Rotation. Rolling and angular momentum.

PHYS104 Physics II

Electric Fields. Gauss's Law. Electric Potential. Capacitance and Dielectrics. Current and Resistance. Direct Current Circuits. Magnetic Fields. Sources of Magnetic Field. Faraday's Law.

Prerequisites: PHYS103

1 Cr Hr (0,3) 2 ECTS

Laboratory exercises that apply physical principles introduced in Physics I and Physics II courses. The lab includes the use of data logging techniques, observations, and scientific reasoning in practical situations.

Prerequisites: PHYS103 Corequisites: PHYS104

CE441 Embedded System Design

PHYS106 General Physics Lab

Embedded system concepts, hardware architecture, design and debugging, embedded processor selection, software development methodologies, real-time Linux, synchronization mechanisms, interrupt latency, application programming interface, interrupt service routine, application design considerations.

Prerequisites: ENE211, BM371, ME0312

BM371 Numerical Methods for Engineers

3 Cr Hr (2,3) This Module introduces the theory and application of numerical methods to approximate mathematical processes (such as reconstruction of a function, evaluation of an integral) or solutions of problems that arise in science and engineering. Such approximations are needed since the analytical methods are either unachievable or the problem under consideration cannot be solved exactly or analytically. Justifications for why and how these approximation

MATH205 Differential Equations

3 Cr Hr (3,0)

3 Cr Hr (3,0) 5 ECTS

3 Cr Hr (3,0)

ENE213 Electrical Circuits Lab

RLC circuits; Sinusoidal steady state analysis.

Resistive circuits, Potentiometers, Superposition, Thevenin's theorem and maximum power transfer, RLC current and voltage characteristics, Frequency response of RL, RC and RLC circuits, Series and parallel resonant circuits, Amplifiers.

resistive circuits: series, parallel and delta to wye; Techniques of circuit analysis: nodal and mesh analyses, source transformation, Thevenin and Norton equivalents; Amplifiers; Inductance, capacitance and mutual inductance; Natural and step responses of RL and RC circuits; Natural and step response of series and parallel

CE331 Signals and Systems

CE461 Image Processing

computation and visualization.

ENE211 Electrical Circuits I

The module provides the mathematical foundation for processing continuous and discrete time signals in both time and frequency domains. The module helps build background for a wide range of applications such as analog and digital communications systems, image processing, and speech recognition. The concepts introduced in this course include linear time-invariant systems, Fourier transforms for continuous and discrete time signals, sampling, and Laplace transform. Course work will include Matlab assignments.

This course provides a solid background in digital image processing. A major goal of the course is to

Prerequisites: ME0344

3 Cr Hr (3,0) 5 ECTS

introduce students to practical applications of image processing in both industry and research. The course includes three assignments and a project that will enable students to use MATLAB for image

Prerequisites: MATH203, Math205, CE212

CE212 Digital Systems

This course covers fundamentals of digital electronics, Binary number system; Boolean algebra, logic operations, algebra and gates, digital circuits analysis, gate-level and block level design of digital circuits, adders, subtractors, comparators, multiplexers, decoders, analysis, design and applications of sequential circuits: flip-flops, registers, counter, and their design procedures, RAM and ROM memory elements

Subjects covered by this module includes: Fundamentals of error analysis, numerical solutions of linear and nonlinear equations, numerical solution of system of equations, curve fitting, numerical integration and

techniques work are provided with emphasis on accuracy and efficiency of the developed methods.

differentiation, numerical solution of ordinary differential equations.

CE2120 Digital Systems Lab

This lab aims to enhance hands-on experience on topics that are theoretically covered in the CE212 digital systems course, including: fundamentals of digital electronics, Binary number system; Boolean algebra, logic operations, algebra and gates, digital circuits analysis, gate-level and block level design of digital circuits, adders, subtractors, comparators, multiplexers, decoders, analysis, design and applications of sequential circuits: flip-flops, registers, counter, and their design procedures, RAM and ROM memory elements. The experiments on all topics vary from functional troubleshooting to gate and block level design implementation.

Corequisites: CE212

5 ECTS

4 ECTS

Prerequisites: CS116, MATH203, MATH205

3 Cr Hr (3,0)

1 Cr Hr (0,3)

5 ECTS

Overview: SI units, voltage and current; Ohm's and Kirchhoff"s Laws, circuits with dependent sources; simple

Prerequisites: PHYS104

1 Cr Hr (0,3) 2 ECTS

3 Cr Hr (3,0)

3 Cr Hr (3,0) 5 ECTS

ENE312 Power Electronics

Power semiconductor devices: types drive circuits, protection circuits and power loss calculations. AC-DC converters: uncontrolled, half-controlled and fully controlled single-phase and three-phase rectifiers. AC-AC converters: cycloconverters. DC-AC inverters: single-phase and three-phase. DC-DC converters' topologies analysis and design: stepdown, step-up, and step-down/up converters.

Prerequisites: ME0214

2 ECTS

1 Cr Hr (0,3)

ENE314 Power Electronics Lab

Single-phase fully controlled bridge rectifier with static and rotating loads. Single-phase half- controlled bridge rectifier. Three-phase controlled bridge rectifier. Single-phase ac voltage controller. Frequency converter. Single-phase bridge inverter with static and rotating loads. Three-phase bridge inverter. Step-down and step-up converter.

Prerequisites: ENE312

3 Cr Hr (3,0) 5 ECTS