

German Jordanian University

School of Applied Technical Sciences

Department of Mechatronics Engineering

Bachelor of Science in Mechatronics Engineering

Study Plan

2014

I. Program Objectives

The objective of this undergraduate Mechatronics Engineering program is to prepare students for careers in industry or further studies in mechatronics engineering and related disciplines. This will be accomplished through the following educational focus:

- Students will have breadth of fundamental knowledge in mathematics, basic sciences, and engineering as well as depth of knowledge in mechatronics engineering.
- Students will have strong practical experience obtained through hands-on learning methodologies.
- Students will have effective communication, interpersonal, and critical thinking skills, a spirit of curiosity, and conduct reflecting professionalism and engineering ethics.

II. Learning Outcomes

- a) Apply knowledge of mathematics, science and mechatronics engineering to the solution of problems particularly in the areas of mechatronics systems and subsystem integration.
- b) Design and conduct experiments in addition to analyzing, interpreting resulting data.
- c) Formulate engineering problems and use modern computer tools.
- d) Thrive in a team environment and understand ethical responsibility.
- e) Demonstrate knowledge and technical skills of key mechatronics specialties needed in Jordan and the region.

III. Assessment of Learning Outcomes

a) Apply knowledge of mathematics, science and mechatronics engineering to the solution of problems particularly in the areas of mechatronics systems and their integration.

Assessment Methods:

- Exams.
- Capstone projects.
- Employer surveys.
- Students' evaluation.
- Students' portfolios.
- b) Design and conduct experiments in addition to analyzing, interpreting data obtained from experiments.

Assessment Methods:

- Exams.
- Performance in laboratory work.
- Capstone projects.
- Employer surveys.
- Students' evaluation.

c) Formulate engineering problems and use modern technical tools necessary for engineering practice such as simulation software and equation solvers.

Assessment Methods:

- Performance in Mechatronics Systems design and integration course.
- Capstone projects.
- Employer surveys
- Students' evaluation.
- Students' portfolios.
- d) Function in a team environment and understand ethical responsibility.

Assessment Methods:

- Final year project.
- Employer surveys.
- e) Demonstrate knowledge and technical skills of key Mechatronics specialties needed in Jordan and the region.

Assessment Methods:

- Field trips reports
- Final year project.
- Employer surveys.

IV. Framework for B.Sc. Degree (Semester Credits)

	Credit Hours			
Classification	Compulsory	Elective	Total	
University Requirements	21	6	27	
School Requirements	37	-	37	
Program Requirements	103	12	115	
Total	161	18	179	

1. University Requirements: (27 credit hours)

1.1. Compulsory: (21 credit hours)

Course		Credit	Contact Hours		
ID	Course Title	Hours	Lecture	Lab	Prerequisite
ARB099	Arabic 99 ^a	0	3	-	-
ARB100	Arabic	3	3	-	ARB099
ENGL098	English I ^a	0	3	-	-
ENGL099	English II ^a	0	3	-	ENGL098
ENGL101	English III	1	3	-	ENGL099
ENGL102	English IV	1	3	-	ENGL101
ENGL201	English V	2	3	-	ENGL102
ENGL202	English VI	2	3	-	ENGL201
GERL101	German I	3	9	-	-
GERL102	German II	3	9	-	GERL101
MILS100	Military Science	3	3	-	-
NE101	National Education	3	3	-	-
	Total	21	48	-	

1.2. Elective: (6 Credit Hours) (two courses out of the following)

Course		Credit	Contact Hours		
ID	Course Title	Hours	Lecture	Lab	Prerequisite
DES101	Arts' Appreciation	3	3	-	-
EI101	Leadership and Emotional Intelligence	3	3	-	-
IC101	Intercultural Communications	3	3	-	-
SE301	Social Entrepreneurship and Enterprises	3	3	-	-
SFTS101	Soft Skills	3	3	-	-
TW303	Technical and Workplace Writing	3	3	-	-
BE302	Business Entrepreneurship	3	3	-	-
PE101	Sports and Health	3	3	-	-
	Total	6	6	-	

^a Not required for students who pass placement test

2. School Requirements: (37 Credit Hours)

		Credit	Contact Hours		
Course ID	Course Title	Hours	Lecture	Lab	Prerequisite
CS116	Computing Fundamentals	3	3	-	-
CS1160	Computing Fundamentals Lab	1	-	3	Corequisite: CS116
ENE211	Electrical Circuits I	3	3	-	PHYS104
ENE213	Electrical Circuits Lab	1	-	3	ENE211
GERL201	German III	3	6	-	GERL102
GERL202	German IV	3	6	-	GERL201
IE121	Workshop	1	-	3	-
MATH099	Pre-Math ¹	0	3	-	-
MATH101	Calculus I	3	3	-	MATH099
MATH102	Calculus II	3	3	-	MATH101
MATH203	Applied Mathematics for Engineers	3	3	-	MATH102
MATH205	Differential Equations	3	3	-	MATH102
ME111	Computer Aided Engineering Drawing	3	2	3	CS116, CS1160
PHYS103	Physics I	3	3	-	-
PHYS104	Physics II	3	3	-	PHYS103
PHYS106	General Physics Lab	1	-	3	PHYS103,
					Corequisite: PHYS104
	Total	37	41	15	

3. Program Requirements (115 credit hours)

3.1.	Program Requirements	(Compulsory):	(103 credit hours)
------	-----------------------------	---------------	--------------------

		Credit	Contact Hours		
Course ID	Course Title	Hours	Lecture	Lab	Prerequisite
ME223	Thermofluids	3	3	-	MATH205
ME323	Thermofluids Lab	1	-	3	ME223
ME344	Control Systems I	3	3	-	TME214, MATH205, ENE211
ME345	Vibration and Control Lab	1	-	3	ME344
ME362	Sensors and Actuators	4	3	3	ENE211, ENE213, MATH205
ME391	Field Training	-	-	160 hr	Dept. Approval
ME491	International Internship	12	_	20 wks	ME391
ME522	Hydraulics and Pneumatics	3	2	3	ME223
ME534	Electrical Machines and Control	3	3	-	ENE211
ME535	Electrical Machines and Control Lab	1	-	3	ME534
ME548	Control Systems II	3	3	-	ME344
ME551	Robotics	3	3	-	TME331, ME344
ME554	Programmable Logic Controllers	3	2	3	ME344
ME555	Machine Intelligence	3	3	-	ME344, ME362
ME561	Mechatronics Systems Design and Integration	3	2	3	ME362, CE341
ME567	Modeling and Simulation	3	3	-	TME214, ME223
ME591	Graduation Project I	3	-	9	ME491, min 124 CH
ME592	Graduation Project II	3	-	9	ME591
IE224	Materials and Mechanics Lab	1	-	3	IE121, TME213
IE325	Manufacturing Processes	4	3	3	IE121, TME213
TME212	Statics	3	3	-	PHYS103, MATH102
TME213	Mechanics of Materials	3	3	-	TME212
TME214	Dynamics and Vibrations	3	3	-	TME212
TME331	Theory of Machines	3	3	-	TME214, ME111, MATH203
TME332	Machine Design	4	3	3	TME213, IE325, ME111
BM371	Numerical Methods for Engineers	3	2	3	CS116, MATH203, MATH205
CE211	Digital Systems	4	3	3	-
CE331	Signals and Systems	3	3	-	ME344
CE341	Microprocessor and	4	3	3	CE211
	Microcomputer Systems				
ENE214	Electronics	3	3	-	ENE211
ENE312	Power Electronics	3	3	-	ENE214
ENE314	Power Electronics Lab	1	-	3	ENE312
GERL301	German V	3	9	-	GERL202
GERL302	German VI	3	9	-	GERL301
	Total	103	83	42	

3.2. Program Requirements (Electives^b): (12 credit hours)

A minimum of 12 credit hours of engineering coursework are required. This list is considered to be open for modifications on the base of the decision of the school council before registration.

		Credit	Contact Hours		
Course ID	Course Title	Hours	Lecture	Lab	Prerequisite
ME516	Waves and Vibrations	3	3	-	TME214
ME533	Advanced Electronics	3	3	-	ENE214
ME541	Real-Time Computer Control	3	3	-	ME344
	Systems	_	_		-
ME542	Digital Control Systems	3	3	-	ME344
ME543	Process Control	3	3	-	ME344
ME545	CNC and Manufacturing Control	3	3	-	IE325, ME344
ME546	Linear Systems	3	3	-	ME344
ME547	State Space Control and Observers	3	3	-	ME344
ME553	Mobile Robots	3	3	-	TME331, ME344
ME556	Autonomous Systems	3	3	-	ME344, ME362
ME557	Process Automation	3	3	-	ME344
ME558	Industrial Robotics	3	3	-	TME331, ME344
ME564	Mechatronics of Smart Materials	3	3	-	ME344, ME362
ME566	Mechatronics Projects	3	3	-	ME344, CE341
ME568	Embedded Systems	3	2	3	ENE211, BM371, CE341
ME569	Smart Sensors	3	3	-	ME362, CE211, ENE211
ME573	Digital Image Processing	3	3	-	MATH203, Math205, CE211
ME582	Micro-Electromechanical Systems	3	3	-	ENE211, TME213, ME223
ME583	Nano Systems	3	3	-	ENE211, TME213, ME223
ME585	Autotronics	3	3	-	ENE214, ME362
ME539	Special Topics in Electrical and Electronics Engineering	3	3	-	Dept. Approval
ME549	Special Topics in Control Engineering	3	3	-	Dept. Approval
ME559	Special Topics in Robotics and Automation	3	3	-	Dept. Approval
ME579	Special Topics in Computer and Digital Sciences	3	3	-	Dept. Approval
ME589	Special Topics in Mechatronics Technology	3	3	-	Dept. Approval
ME597	Special Topics I	1	-	3	Dept. Approval
ME598	Special Topics II	2	2	-	Dept. Approval
IE371	Engineering Economics	3	3	-	MATH205
TME513	Multi-Body Dynamics	3	3	-	TME331
TME514	Machine Dynamics	3	3	-	TME331

^b ME491 International Internship is prerequisite for all elective courses

V. Study Plan^c Guide for the Bachelor Degree in Mechatronics Engineering

	First Year					
	First Semester					
Course ID	Course Title	Cr.	Prerequisites	Co-requisite		
15424		Hr.				
IE121	Workshop	1	-	-		
CS116	Computing Fundamentals	3	-	-		
CS1160	Computing Fundamentals Lab	1	-	CS116		
MATH101	Calculus I	3	MATH099	-		
PHYS103	Physics I	3	-	-		
ARB100	Arabic	3	ARB099	-		
ENGL101	English III	1	ENGL099	-		
GERL101	German I	3	-	-		
	Total	18				

	First Year				
	Second Semeste	er			
Course ID	Course Title	Cr.	Prerequisites	Co-requisite	
		Hr.			
ME111	Computer Aided Engineering Drawing	3	CS116,CS1160	-	
ME1110	Computer Aided Engineering Drawing Lab	0	-	ME111	
MATH102	Calculus II	3	MATH101	-	
PHYS104	Physics II	3	PHYS103	-	
PHYS106	General Physics Lab	1	PHYS103	PHYS104	
ENGL102	English IV	1	ENGL101	-	
GERL102	German II	3	GERL101	-	
MILS100	Military Science	3	-	-	
NE101	National Education	3	-	-	
	Total	20			

[°] The following study plan guide assumes having passed all placement tests

	Second Year				
	First Semester				
Course ID	Course Title	Cr.	Prerequisites	Co-requisite	
		Hr.			
TME212	Statics	3	MATH102,	-	
			PHYS103		
CE211	Digital Systems	4	-	-	
CE2110	Digital Systems Lab	0	-	CE211	
ENE211	Electrical Circuits I	3	PHYS104	-	
MATH205	Differential Equations	3	MATH102	-	
ENGL201	English V	2	ENGL102	-	
GERL201	German III	3	GERL102	-	
	Total	18			

	Second Year				
	Second Semeste	er			
Course ID	ourse ID Course Title Cr. Prerequisites C				
		Hr.			
TME213	Mechanics of Materials	3	TME212	-	
TME214	Dynamics and Vibration	3	TME212	-	
ME223	Thermofluids	3	MATH205	-	
ENE214	Electronics	3	ENE211	-	
ENE214	Electrical Circuits I Lab	1	ENE211	-	
MATH203	Applied Math for Engineers	3	MATH102	-	
ENGL202	English VI	2	ENGL201	-	
GERL202	German IV	3	GERL201	-	
	Total	21			

Total 21

	Third Year			
First Semester				
Course ID	Course Title	Cr. Hr.	Prerequisites	Co-requisite
IE224	Materials and Mechanics Lab	1	IE121, TME213	-
ME362	Sensors and Actuators	4	ENE211, ENE213, MATH205	-
ME3620	Sensors and Actuators Lab	0	-	ME362
ME344	Control Systems I	3	MATH205, TME214, ENE211	-
IE325	Manufacturing Processes	4	IE121, TME213	-
IE3250	Manufacturing Processes Lab	0	-	IE325
CE341	Microprocessor and Microcomputer Systems	4	CE211	-
CE3410	Microprocessor and Microcomputer Systems Lab	0	-	CE341
GERL301	German V	3	GERL202	-
	Total	19		

Third Year						
Second Semester						
Course ID	Course Title	Cr. Hr.	Prerequisites	Co-requisite		
TME331	Theory of Machines	3	TME214, ME111, MATH203	-		
ME323	Thermofluids Lab	1	ME223			
ME344	Control Systems II	3	ME344	-		
ME345	Vibration and Control Lab	1	ME344	-		
ME391	Field Training	0	-	-		
BM371	Numerical Methods for Engineers	3	CS116, MATH203, MATH205	-		
BM3710	Numerical Methods for Engineers Lab	0	-	BM371		
CE331	Signals and Systems	3	ME344	-		
ENE312	Power Electronics	3	ENE214	-		
GERL302	German VI	3	GERL301	-		
Total 20						

Fourth Year					
First Semester					
Course ID	Course Title	Cr.	Prerequisites	Co-requisite	
		Hr.			
-	Technical Elective	3	-	-	
-	Technical Elective	3	-	-	
-	Technical Elective		-	-	
-	Technical Elective	3	-	-	
	Total	12			

Fourth Year					
Second Semester					
Course ID	Course Title	Cr.	Prerequisites	Co-requisite	
		Hr.			
ME491	International Internship ^d	12	ME391	-	
	Total	12			

German year prerequisites

- A minimum GPA of 60.0%
- Successful completion of 90 credit hours excluding all German language courses
- Passing GERL302 German VI, ENGL201 English V, and Arabic 99
- Passing four out of the five following courses:
 - ME344 Control Systems I
 - ME362 Sensors and Actuators
 - ENE214 Electronics
 - CE331 Signals and Systems
 - CE341 Microprocessor and Microcomputer Systems

^d Courses attended and/or passed during International Training are not transferable

Fifth Year					
First Semester					
Course ID	Course Title		Prerequisites	Co-requisite	
TME332	Machine Design	4	TME213, IE325, ME111	-	
TME3320	Machine Design Lab	0	-	TME332	
ME534	Electrical Machines and Control	3	ENE211	-	
ME551	Robotics	3	TME331,	-	
			ME344		
ME522	Hydraulics and Pneumatics	3	ME223	-	
ME5220	Hydraulics and Pneumatics Lab	0	-	ME522	
ME591	Graduation Project I	3	ME491, and	-	
			min of 124 CH		
ENE314	Power Electronics Lab	1	ENE312	-	
-	University Elective	3	-	-	
	Total	20			

Fifth Year						
Second Semester						
Course ID	Course Title		Prerequisites	Co-requisite		
		Hr.				
ME561	Mechatronics Systems Design and Integration	3	ME362, CE341	-		
ME555	Machine Intelligence	3	ME344, ME362			
ME535	Electrical Machines and Control Lab	1	-	ME534		
ME567	Modeling and Simulation		TME214,	-		
		3	ME223			
ME594	Graduation Project II	3	ME591	-		
ME554	Programmable Logic Controllers		ME344	-		
ME5540	Programmable Logic Controllers lab	0		ME554		
-	University Elective	3	-	-		
	Total	19				

VI. Course Identification Convention

Example: ME321

Program: ME is short for Mechatronics EngineeringLevel: The first number (3) represents the level of the course in the study planField: The second number (2) represents the group number of the courseSequence: The third number (1) represents a unique serial number of the course in its group

Groups

		Course ID	Course Title
••	CS	ME111	Computer Aided Engineering Drawing
p 1	lied ani	ME211	Statics and Dynamics
Group 1:	Applied Mechanics	ME516	Waves and Vibrations
0	Š		
ä	le si	ME223	Thermofluids
dn	nce	ME323	Thermofluids Lab
Group 2:	Thermal Sciences	ME522	Hydraulics and Pneumatics
		ME533	Advanced Electronics
Group 3:	Electrical and Electronics	ME534	Electrical Machines and Control
rou	an ectro	ME535	Electrical Machines and Control Lab
Ū	Ele	ME539	Special Topics in Electrical and Electronics Engineering
		- -	
		ME343	Automatic Control Systems
		ME344	Control Systems I
	50	ME345	Vibration and Control Lab
	ring	ME346	Instrumentation and Measurements
÷	Jee	ME347	Instrumentation and Measurements Lab
dr	Group 4: Control Engineering	ME541	Real-Time Computer Control Systems
iro	Ē	ME542	Digital Control Systems
0	itro	ME543	Process Control
	Cor	ME545	CNC and Manufacturing Control
		ME546	Linear Systems
		ME547	State Space Control and Observers
		ME548	Control Systems II
	tion	ME551	Robotics
	ma	ME553	Mobile Robots
5:	uto	ME554	Programmable Logic Controllers
Group 5:	d Ai	ME555	Machine Intelligence
Ole	anc	ME556	Autonomous Systems
	tics	ME557	Process Automation
	Robotics and Automati	ME558	Industrial Robotics
	Ro	ME559	Special Topics in Robotics and Automation

	ics	ME362	Sensors and Actuators
	Applied Mechatronics	ME561	Mechatronics Systems Design and Integration
:0	hat	ME564	Mechatronics of Smart Materials
Group 6:	lec	ME566	Mechatronics Projects
Ğ	∠ p	ME567	Modeling and Simulation
	plie	ME568	Embedded Systems
	Ap	ME569	Smart Sensors
	er ss	ME573	Digital Image Processing
dn	put Jigit nce		
Group 7:	Computer and Digita Sciences		
•	i a C		
		1	
	cs es	ME582	Micro-Electromechanical Systems
 80	oni ogi	ME583	Nano Systems
Group 8:	nol	ME585	Autotronics
g	Mechatronics Technologies	ME589	Special Topics in Mechatronics Technology
	2 F		
		1	
		ME391	Field Training
	oics	ME491	International Internship
9:	Тор	ME591	Graduation Project I
Group 9:	Practical Topics	ME592	Graduation Project II
ษั	acti	ME597	Special Topics MI
	Pr	ME598	Special Topics MII

VII. **Description of Courses offered by the Mechatronics Engineering Department**

ME111: Computer Aided Engineering Drawing

The use of computer aided software in drawing such as AutoCAD. Geometric construction. Orthographic and Isometric projections; Sketching, sectioning, dimensioning and layering. Model layout (wire-frame, surface, and solid modeling), plotting to scale, blocks and attributes, Introduction to descriptive geometry, perspective drawing. Engineering applications.

Prerequisites: CS116, CS1160

ME211: Statics and Dynamics

Basic concepts of mechanics, vectors, equilibrium of particles, force systems, equilibrium of rigid bodies, distributed forces, centroids and moments of inertia, friction, internal shear force and bending moment in beams, kinematics of particles, rectilinear and curvilinear motion, kinematics of rigid bodies. Prerequisites: MATH102, PHYS103

ME223: Thermofluids

Properties of pure substances, Energy transfer, First law of Thermodynamics, Second law of thermodynamics, Basic concepts of fluid mechanics, Bernoulli and Energy equation, Momentum equation, Flow in pipes, Mechanisms of Heat transfer.

Prerequisites: MATH205

ME323: Thermofluids Lab

Measurement of thermal conductivity, forced convection heat transfer, measurement of specific heat ratio, flow through nozzles, losses in pipes and fittings, hydrostatic pressure, impact of water jet, flow visualizations, performance of hydraulic positive displacement pumps.

Prerequisites: ME223

ME346: Instrumentation and Measurements

2 Cr (2,0) Introduction to instrumentation, Units, Dimensions and standards, Error measurements, Statistical analysis of experimental data, Op-Amp circuits in instrumentation, Basic electrical measurement and sensing devices: physics of electric, magnetic, chemical sensors displacements, area, pressure, flow, temperature, thermal and transport properties, force, torque and strain measurements. Smart sensors and networking of sensor systems. Data acquisition and processing.

Prerequisites: ENE211, MATH205

ME347: Instrumentation and Measurements lab

Measurements with different micrometers & Vernier measuring instruments, angular measurements, roundness & concentricity of cylindrical work pieces, tool maker's microscope, optical projectors, surface measurements. Analysis of experimental data and error estimation. Basic electrical measurement and sensing devices: physics of electric, magnetic, chemical sensors, displacement, area, pressure, flow, temperature, thermal and transport properties, force, torque and strain measurements. Smart sensors and networking of sensor systems. Data acquisition and processing.

Corequisites: ME346

3 Cr (3,0)

1 Cr (0,3)

1 Cr (0,3)

3 Cr (2,3)

ME362: Sensors and Actuators

ME391: Field Training

ME491: International Internship

ME516: Waves and Vibrations

Introduction to instrumentation, Units, Dimensions and standards, Error measurements, Statistical analysis of experimental data, Op-Amp circuits in instrumentation. Overview of transducers, sensors and actuators, physical principles, technical characteristics, application scenarios, integration of sensors and actuators into PLC and computer based solutions, data acquisition, processing and monitoring techniques, practical applications. Sensor and Actuators Lab: Measurements with different micrometers & Vernier measuring instruments, angular measurements, roundness & concentricity of cylindrical work pieces, tool maker's microscope, optical projectors, surface measurements. Analysis of experimental data and error estimation. Basic electrical measurement and sensing devices: physics of electric, magnetic, chemical sensors, displacement, area, pressure, flow, temperature, thermal and transport properties, force, torque and strain measurements. Smart sensors and networking of sensor systems. Data acquisition and processing.

Prerequisites: ENE211, ENE213, MATH205

Prerequisites: Dept. Approval

Prerequisites: ME391

3 Cr (3,0)

Prerequisites: TME214

ME522: Hydraulics and Pneumatics

diffraction of waves, dispersion of waves.

160 hours of training at a company in Jordan.

Twenty-weeks of internship at a company in Germany.

Pneumatic and hydraulic components; compressor, cooler, compressed-air containers, filters, valves, pumps, piping system basic circuits in pneumatics and hydraulics, design and simulation of pneumatic and hydraulic circuits, servo pneumatics and servo hydraulics, basics of servo drives, assembling, measuring techniques.

Prerequisites: ME223

ME533: Advanced Electronics

Physical principles and operational characteristics of advanced semiconductor electronic devices with emphasis on metal-oxide systems, bipolar, high-electron mobility, and field-effect transistors. Topics also include quantum point contact and tunneling devices. Advanced background in solid state electronic devices intended to help students to continue advanced research in the variety of different branches of semiconductor microelectronics.

Prerequisites: ENE214

4 Cr (3,3)

12 Cr (0,0)

0 Cr (0,0)

Harmonic oscillator, mechanical and electromagnetic oscillations, forced oscillations, resonance, coupled oscillators, electromagnetic waves, traveling waves, standing waves, interference and

3 Cr (2,3)

ME539: Special Topics in Electrical and Electronics Engineering

A course on a special topic in Electrical and Electronics.

ME541: Real-Time Computer Control Systems

Review of continuous control. Dynamic response, Feedback properties, Root locus and frequency response designs. Introduction to digital control. Discrete system analysis. Difference equations, Discrete transfer functions, z-transform, Discrete signal analysis. Discrete approximation of differential equations, Effects of Sampling, PID control in discrete systems. Sampled-data systems. Sample & Hold, Spectrum of sampled signals, Data extrapolation, Block diagram analysis. Discrete equivalences. Numerical integration, Pole & zero mapping, Hold equivalence. Design using transforms techniques. Design by emulation, Design by root-locus, Design by frequency response. Implementation of Direct Digital Control algorithms. Implementation of the basic PID algorithm, Synchronization of the control loop, Timing Considerations in Implementation of Control Loops. Hard and soft real-time systems, Realtime scheduling theory, Deadlines in real-time control systems.

Prerequisites: ME344

3 Cr (3,0)

Discrete time control theory, z-transform, sampling and hold operations, A/D and D/A conversions, modeling of digital systems, response evaluation; stability, basis of digital control, modeling of sampleddata systems, system identification using the batch least squares method, time response characteristics, stability analysis techniques, discrete-time approximation of continuous-time controllers, classical design methods based on root locus and frequency response, and modern design methods including state and observer feedback design.

Prerequisites: ME344

ME543: Process Control

ME542: Digital Control Systems

Dynamics of mechanical, food, beverage and chemical processes; system capacity; resistance; piping complexes; characteristics and dynamics of control valves; control of pressure, speed, PH, mixing ration, Boolean algebra and fluid logic, sequential circuits, process time constants; proportional, reset, and derivative control actions; feedforward and cascade control; direct digital control.

Prerequisites: ME344

3 Cr (3,0)

3 Cr (3,0)

ME545: CNC and Manufacturing Control

Concepts and benefits of computer integrated manufacturing (CIM), design for manufacturing, computer-aided design, process planning, manufacturing (computer numerical control parts programming), and inspection, robots in CIM, production planning and scheduling in CIM, system integration.

Prerequisites: IE325, ME344

ME546: Linear Systems

Review of matrix algebra. State-space description of dynamic systems: linearity, causality, timeinvariance, linearization. Solution of state-space equations. Transfer function representation. Discretetime models. Controllability and observability. Canonical forms and minimal-order realizations. Stability. Stabilizability and pole placement. Linear quadratic control. Observer design.

Prerequisites: ME344

ME547: State Space Control and Observers

Pole placement design of both controllers and observers using MATLAB. Regulator and servo design. Optimal design of controllers and observers. Quadratic Optimal Regulator Systems.

Prerequisites: ME344

3 Cr (3,0)

3 Cr (3,0)

3 Cr (3,0)

Prerequisites: Dept. Approval

ME548: Control Systems II

State-space modeling of multi-variable systems, stability, sensitivity, controllability, and observability, optimal observers, Kalman filter, linear quadratic regulators, digital control systems, z-transform, stability, transient response, digital cascade compensators.

Prerequisites: ME344

ME549: Special Topics in Control Engineering

A course on a special topic in Robotics and Automation.

ME551: Robotics

Planar and spatial transformations, forward and inverse kinematics, trajectory planning, robot dynamics, robot control (linear, nonlinear, and force control).

Prerequisites: ME344, TME331

ME553: Mobile Robots

Introduction to variety of autonomous mobile robots, wheeled robots, robot platforms and modeling, control structures, sensing & estimation, localization, motion planning and multi-robot systems. Students will build, experiment with, and compete with mini-mobile robots.

Prerequisites: ME344, TME331

ME554: Programmable Logic Controllers

Theoretical and applied material, including: application and hardware composition of programmable logic controllers; functional programming blocks such as logic gates including AND, OR etc. as well as latches, timers, counters, and analog blocks; design approaches based on Boolean and structured logic, state machines, flowcharts; programming methodologies including: ladder diagrams, blocks and textbased.

Prerequisites: ME344

ME555: Machine Intelligence

The objective of this course is to introduce the students to current intelligent system concepts. An overview of different learning schemes will be provided, including: Decision Tree, Bayesian, Inductive, Analytical and Rule-based Learning. The main focus of the course will be on Neural Nets, Genetic Algorithms and Reinforcement Learning, adaptive control.

Prerequisites: ME344, ME362

ME556: Autononous Systems

Introduction to essential aspects of autonomous systems; mobility, flexibility, adaptability, intelligence, modeling, control, sensing and estimation, sensor fusion and data mining, localization and navigation, motion and action planning, scheduling and applications.

Prerequisites: ME344, ME362

ME557: Process Automation

3 Cr (3,0) Definition of industrial processes, structures and layout design, hierarchical concepts, comprehensive view of material, energy and information flow; structure, principles of task planning, placing and final reporting, use of knowledge based systems for planning and optimization, modeling of product data, use of distributed data base systems.

Prerequisites: ME344

3 Cr (2,3)

3 Cr (3,0)

3 Cr (3,0)

Prerequisites: Dept. Approval

3 Cr (3,0)

3 Cr (3,0)

3 Cr (3,0)

ME558: Industrial Robotics

Basic robotics technology, application in manufacturing, manipulators and mechanical design, programming languages, intelligence, and control.

Prerequisites: ME344, TME331

Prerequisites: Dept. Approval

ME561: Mechatronics Systems Design and Integration

A course on a special topic in Robotics and Automation.

Design and planning of the system, purchase (virtual) of different components, sensors and actuator units, machine parts, devices, electric, mechanical, pneumatic, hydraulic components, PLC and control units, assembly, commissioning, interfacing, software and programming, calibration, standard checks, test operation, troubleshooting, documentation, service and maintenance, safety, cost, delivery and disassembly and packing.

Prerequisites: ME362, CE341

ME564: Mechatronics of Smart Materials

Properties of smart materials, classes of smart materials, shape memory alloy materials, piezoelectric materials, smart sensors, smart actuators, mechatronics of smart materials: modeling, design, digital control, and their applications.

Prerequisites: ME344, ME362

Prerequisites: ME344, CE341

3 Cr (3,0)

3 Cr (3,0)

Implementation of a mechatronics projects through all stages of modeling, simulation, control, component interface, signal conditioning, subsystem integration, documentation and presentation.

ME567: Modeling and Simulation

ME566: Mechatronics Projects

Notations and definitions, structure of mechatronics systems, modeling and simulation of mechanical, electrical, hydraulic, pneumatic and thermal subsystems, various mathematical forms of model descriptions, systems of differential equations, transfer functions, state space representations, multiport systems, merging of models of subsystems into a model of a mechatronic system, linear graphs, bond graphs, multi-energy domain models, introduction and application of simulation software tools. Prerequisites: ME223, TME214

Fundamentals of embedded system hardware and firmware design, embedded processor selection, A/D and D/A conversion, signal conditioning, glue logic, circuit design, circuit layout, circuit debugging, microcontroller architecture and instruction set, microcontroller peripheral interfaces, sensor and actuator interfacing, real-time and power requirements, development tools.

Prerequisites: ENE211, BM371, CE341

ME569: Smart Sensors

ME568: Embedded Systems

Active sensors: Piezo sensor for force, pressure and vibration, electrodynamic sensors for speed and rotation, photodiodes and thermocouples. Passive sensors: resistive sensors, capacitive sensors, inductance sensors. Analog data processing: operational amplifiers, amplification, addition, multiplication, division, integration and derivation, filtering. Digital data processing: data acquisition, multiplexing, digital filters, programmable devices. A/D-converter: bit-number, resolution, sampling rate, bipolar- and unipolar inputs. D/A-converters: flash, Weighing converter, Dual slope converter IOs, data lines.

Prerequisites: ME362, CE211, ENE211

ME559: Special Topics in Robotics and Automation

3 Cr (3,0)

3 Cr (3,0)

3 Cr (3,0)

3 Cr (3,0)

3 Cr (3,0)

ME573: Digital Image Processing

Fundamentals of digital image processing, image acquisition and display, properties of the human visual system, color representations, types of image sources, image enhancement, sampling and quantization, histograms, point operations, linear image filtering and correlation, transforms and subband decompositions, nonlinear filtering, contrast and color enhancement, image restoration, image registration, feature extraction and recognition techniques, frequency domain analysis.

Prerequisites: CE211, MATH203, MATH 205

ME579: Special Topics in Computer and Digital Sciences A course on a special topic in Computer and Digital Sciences.

Prerequisites: Dept. Approval

ME582: Micro Electromechanical Systems 3 Cr (3,0) Introduction to micromachining processes; mechanical properties of materials used in micromechanical systems; design and fabrication of free standing structures; sacrificial and structural layers; finite element modeling; micromechanical components; solid lubrication of microbearings; special techniques: double-side lithography, anodic bonding, electro-chemical drilling, deep etching, LIGA process, laser microfabrication; influence of IC fabrication processes on the mechanical properties; applications in microdevices; simulation and packaging.

Prerequisites: ME223, ENE211, TME213

ME583: Nano Systems

Assembly, manipulation and control of materials at the atomic and molecular scale to fabricate structures, devices and systems that have novel properties and functionality.

Prerequisites: ME223, ENE211, TME213

ME585: Autotronics

Electronic control systems and component in motor vehicle sub-systems, motor vehicle mechanical systems and sub-systems, electrical and electronic principles, faults and diagnosis of automotive electronic systems, engine management, fuel injection, electronics, transmission, stability, and ABS controls.

Prerequisites: ENE214, ME362

ME589: Special Topics in Mechatronics Technology	3 Cr (3,0)
A course on a special topic in Mechatronics Technology.	
	Prerequisites: Dept. Approval

The first part of a team-based one-year senior design project in the field of mechatronics engineering. Prerequisites: ME491, min 124 CH

ME592: Graduation Project II The second and final part of a team-based one-year senior design project in the field of mechatronics engineering.

Prerequisites: ME591

ME597: Special Topics I

ME591: Graduation Project I

A course on a special topic in mechatronics.

ME598: Special Topics II

A course on a special topic in mechatronics.

Prerequisites: Dept. Approval

Prerequisites: Dept. Approval

proval

3 Cr (3,0)

3 Cr (3,0)

1 Cr (0,3)

2 Cr (2,0)

3 Cr (3,0)

3 Cr (3,0)

Description of Courses offered by other Departments VIII.

IE121: Workshop

General safety, materials and their classifications, measuring devices and their accuracy, basic household plumbing and electricity, fits and tolerances, theoretical background for the practical exercises including fitting, forging, carpentry, casting, welding, mechanical saws, shearers, drills, lathes, milling machines, shapers and grinders.

Prerequisites: -

1 Cr (0,3)

4 Cr (3,3)

1 Cr (0,3)

IE224: Materials and Mechanics Lab

Studying the properties of engineering materials and the relationship between these properties and atomic structure, cross-sectional sample preparation, optical microscopy, heat treatment, corrosion behavior, tensile and compression strength, hardness testing, impact testing, creep behavior, and fatigue behavior.

Prerequisites: IE121, TME213

IE325: Manufacturing Processes

Traditional manufacturing processing of materials (ferrous and non-ferrous) including metal cutting, casting, rolling, forging, and drawing. Modern manufacturing processes and related topics including ceramics, composites, powder metallurgy, property enhancing and surface processing operations, and rapid prototyping. Manufacturing Processes Lab: Experiments in casting, forming, machining, welding, heat treatment and plastic manufacturing.

Prerequisites: IE121, TME213

IE371: Engineering Economics

TME212: Statics

Principles of Engineering Economy, cost concepts, time value of money, interest formula, depreciation models, rate of return, cash flow, project evaluation methods, replacement analysis, break even analysis, economic studies for decision making.

Prerequisites: MATH205

Vector mechanics of forces and moments, free-body diagrams, couples, resultants, equilibrium of particles and rigid bodies in two and three dimensions, forces in trusses, frames, and machines, centroids, centers of mass, distributed forces, internal shear forces and bending moments in beams, shear force and bending moment diagrams, friction, area of moments of inertia.

Prerequisites: MATH102, PHYS103

TME213: Mechanics of Materials

Normal and shear stress and strain, deflection of axially loaded members, thermal stress, torsion of bars with circular sections, shear stress, angle of twist, power transmission, bending of beams, bending and shear stress, combined loadings, beam deflection, column buckling.

TME214: Dynamics and Vibration

Kinematics and kinematics of particles, Newton's laws, planar kinematics and kinetics of a rigid bodies, free vibration of single degree of freedom systems, harmonic excitation, general force response. Prerequisites: TME212

3 Cr (3,0)

3 Cr (3,0)

3 Cr (3,0)

Prerequisites: TME212 3 Cr (3,0)

TME331: Theory of Machines

Position analysis, mechanisms, vector analysis of velocity and acceleration, analytic and graphical loop closure methods, cam design, spur, bevel, and helical gears, gear trains, force analysis, static and dynamic balance of rotors, synthesis of linkage, spatial mechanisms.

Prerequisites: ME111, TME214, MATH203

TME332: Machine Design

Introduction to design process, design considerations, stress analysis and deflection of mechanical elements, energy methods, static strength and failure theories, fatigue strength and failure theories, shafts, nonpermanent joints, mechanical springs, and rolling bearings, CAD software, stress analysis using FEM codes, kinematics simulations, surface generation, 3D printing.

Prerequisites: TME213, IE325, ME111

TME513: Multi-Body Dynamics

Principles of kinematics and dynamics in spatial motion, constraint equations describing various types of spatial kinematic joints, algorithms for automatic generation of the constraint equations, techniques for automatic generation of the spatial equations of motion.

Prerequisites: TME331

TME514: Machine Dynamics

Force analysis of machinery, resonance (symptoms, tests, fixes), rotors dynamics, dynamic balance of machinery, analytical determination of unbalance, dynamic behavior of drives and machine frames as complex systems, typical dynamic effects, such as the gyroscopic effect, damping and absorption, shocks.

Prerequisites: TME331

4 Cr (3,3)

3 Cr (3,0)

3 Cr (3,0)

Description of Courses offered by other Schools IX.

Pre-Math: Math 99

Real numbers and their properties, Solutions of equations and inequalities, Functions, Domain of functions, Operations on functions, Polynomials, Zeros of polynomials, Power, Exponential, Logarithmic, and Trigonometric functions and their graphs, Applications of trigonometry, Analytic Geometry: Lines, circles and parabolas.

Prerequisites:-

MATH101: Calculus I

Review of functions, functions, Inverse functions, Inverse trigonometric functions, The concept of limits, Computation of limits, Continuity, Asymptotes, The Derivative, Computation of derivatives, The product and quotient rules, The Chain Rule, Derivatives of Trigonometric, Inverse Trigonometric, Exponential, Logarithmic, and Hyperbolic Functions. Applications of Differentiation: Increasing and Decreasing Functions, Extrema of Functions, Graphs of Functions, Indeterminate Forms and L'Hopital Rule. Antiderivatives, Definite integrals, Fundamental Theorem of Calculus, Integration by Substitutions, Integration by Parts, Applications of integration: Area between curves, Arc length, Volume and Surface Area of Solids of Revolution.

Prerequisites: Pass MATH099

MATH102: Calculus II

Review of Integration, Integration by Trigonometric Substitutions, Integration using Partial Fractions, Improper Integrals. Vectors in 2 and 3 Spaces, The Inner and Cross Products of vectors. Polar Coordinates, Graphs and Arc length of Polar curves. Functions of Several Variables; Domain, Limits, and Continuity. Partial Derivatives, The Chain Rule, The Gradient and Directional Derivatives, Extrema of Functions of Several Variables and Lagrange multipliers. Double Integrals, Area of Plane Region and Volumes of Solids using Double integrals, Triple Integrals, Cylindrical and Spherical Coordinates, Triple Integrals using Cylindrical and Spherical Coordinates.

Prerequisites: MATH101

MATH203: Applied Math for Engineers

Vector analysis in Cartesian coordinates. General Curvilinear Coordinates, Vector calculus in general curvilinear coordinates with emphasis on Spherical and Cylindrical coordinates, transformations between different coordinate systems, vector differentiation. Matrices and linear equations; Matrices and Linear Operators; Determinants, Eigenvalues and eigenvectors. Complex Numbers and Complex Variables; Representation of complex numbers, Powers and roots of complex numbers, Functions of a complex variable. Review of Infinite Series; Infinite series of constant terms, Convergence tests, Power series and radius of convergence, Taylor, and Maclaurin series and Fourier series.

Prerequisites: MATH102

MATH205: Differential Equations

Ordinary differential equations; Sturm-Liouville theory, properties of Special Functions, Solution methods including Laplace transform, and Fourier transform. Eigenvalue problems and expansions in orthogonal functions. Partial differential equation: classification, separation of variables, solution by series and transform methods. Models in Applied Mathematics; Applications to illustrate typical problems and methods of applied mathematics in solid and fluid mechanics, fields of physics, deformation and vibration, wave phenomena, diffusion phenomena, heat conduction, chemical and nuclear reactors, and biological processes.

Prerequisites: MATH102

3 Cr (3,0)

0 Cr (3,0)

3 Cr (3,0)

3 Cr (3,0)

PHYS103: Physics I

Physics and measurement. Motion in one dimension. Vectors. Motion in two dimensions. Force and motion. Kinetic energy and work. Potential energy and conservation of energy. Linear momentum and collisions. Rotation. Rolling and angular momentum.

Prerequisites:-

PHYS104: Physics II

Electric Fields. Gauss's Law. Electric Potential. Capacitance and Dielectrics. Current and Resistance. Direct Current Circuits. Magnetic Fields. Sources of Magnetic Field. Faraday's Law.

Prerequisites: PHYS103

PHYS106: General Physics Lab

Laboratory exercises that apply physical principles introduced in Physics I and Physics II courses. The lab includes the use of data logging techniques, observations, and scientific reasoning in practical situations.

> Prerequisites: PHYS103 Corequisites: PHYS104

BM371: Numerical Methods for Engineers

Fundamentals of error analysis, numerical solutions of linear and nonlinear equations, numerical solution of system of equations, curve fitting, numerical integration and differentiation, numerical solution of ordinary differential equations. Application of numerical methods using relevant software packages.

Prerequisites: CS116, MATH203, MATH 205

CS116: Computing Fundamentals

Basic computer skill; Programming concepts; algorithms: data types, arithmetic, logical, relational, Boolean, and assignment operators, simple input and output statements; programming control structures; data structures: single and multidimensional arrays; character strings; functions; pointers; file structures and representation; 3-hours lab session every week to enhance hands-on experience on topics that are theoretically covered in the course using Gnu C compiler on a Solaris/Sun environment. Prerequisites: -

CS1160: Computing Fundamentals Lab Basic computer skill; Programming concepts; algorithms: data types, arithmetic, logical, relational, Boolean, and assignment operators, simple input and output statements; programming control structures; data structures: single and multidimensional arrays; character strings; functions; pointers; file structures and representation; 3-hours lab session every week to enhance hands-on experience on topics that are theoretically covered in the course using Gnu C compiler on a Solaris/Sun environment.

Corequisites: CS116

3 Cr (3,0)

1 Cr (0,1)

3 Cr (2,3)

3 Cr (3,0)

1 Cr (0,3)

CE211: Digital Systems

Fundamentals of digital electronics, Binary number system; Boolean algebra, logic operations, algebra and gates, digital circuits analysis, gate-level and block level design of digital circuits, adders, subtractors, comparators, multiplexers, decoders, analysis, design and applications of sequential circuits: flip-flops, registers, counter, and their design procedures, RAM and ROM memory elements. The course also includes 3-hours lab session every week to enhance hands-on experience on topics that are theoretically covered in the course: basic logic gate experiments, combinational logic circuits experiments, and sequential logic circuits experiments. The experiments on all topics vary from functional troubleshooting to gate and block level design implementation.

Prerequisites: -

3 Cr (3,0)

CE331: Signals and Systems

Concepts and mathematical tools in continuous and discrete-time signal processing and linear systems analysis with examples from digital signal processing, communications, and control. Discretetime signal models. Continuous-discrete-continuous signal conversion. Discrete-time impulse and step response. Frequency domain representations: Fourier series and transforms. Connection between continuous and discrete time frequency representations. Discrete Fourier transform (DFT) and fast Fourier transform (FFT). Digital filter and signal processing examples. Discrete-time and hybrid linear systems. Stability and causality. Z transforms and their connection to Laplace transforms. Frequency response of discrete-time systems.

Prerequisites: ME344

Introduction to theoretical concepts of 8-bit and 16-bit microprocessors including microprocessor architecture, memory organization, instruction set, input/output organization, and interrupts. Design

CE341: Microprocessor and Microcomputer Systems

of microcomputer systems, address maps, system bus, memory maps, peripheral I/O, memory mapped I/O, interrupt-driven I/O, interface devices, and general-purpose programmable peripheral devices. Prerequisites: CE211

ENE211: Electrical Circuits I

Overview: SI units , voltage and current; Ohm's and Kirchhoff"s Laws, circuits with dependent sources; simple resistive circuits: series, parallel and delta to wye; Techniques of circuit analysis: nodal and mesh analyses, source transformation, Thevenin and Norton equivalents; Amplifiers; Inductance, capacitance and mutual inductance; Natural and step responses of RL and RC circuits; Natural and step response of series and parallel RLC circuits; Sinusoidal steady state analysis.

Prerequisites: PHYS104

ENE213: Electrical Circuits Lab

Resistive circuits, Potentiometers, Superposition, Thevenin's theorem and maximum power transfer, RLC current and voltage characteristics, Frequency response of RL, RC and RLC circuits, Series and parallel resonant circuits, Amplifiers.

Prerequisites: ENE211

ENE213: Electronics

Introduction to (semiconductor) electronic devices. Semiconductor p-n junction, the transistor. Analysis and synthesis of linear and nonlinear electronic circuits containing diodes and transistors. Elementary analog circuit analysis. Fundamentals of transistors and voltage amplification. Characterization of MOS transistors for circuit simulation. Common-source amplifiers, MOSFET source-follower buffer stage, differential amplifier stage, and MOSFET current sources. Operational amplifiers. Development of a Basic CMOS Operational amplifier.

Prerequisites: ENE211

4 Cr (3,3)

4 Cr (3,3)

4 Cr (3,3)

1 Cr (0,3)

Power semiconductor devices: types, drive circuits, protection circuits and power loss calculations. AC-DC converters: uncontrolled, half-controlled and fully controlled single-phase and three-phase rectifiers. AC-AC converters: cycloconverters. DC-AC inverters: single-phase and three-phase. DC-DC converters' topologies analysis and design: stepdown, step-up, and step-down/up converters.

Prerequisites: ENE214

ENE314: Power Electronics Lab

Single-phase fully-controlled bridge rectifier with static and rotating loads. Single-phase half-controlled bridge rectifier. Three-phase controlled bridge rectifier. Single-phase ac voltage controller. Frequency converter. Single-phase bridge inverter with static and rotating loads. Three-phase bridge inverter. Step-down and step-up converter.

Prerequisites: ENE312

0 Cr (3,0)

1 Cr (0,3)

This course aims to develop student's ability to read, comprehend, literary analyze, grammatically analyze, linguistically analyze, poetically analyze, and rhetorically analyze texts properly. The course also includes a selection of Arabic literature in poetry and prose representing different literary ages, in addition to several common forms of writing such as: scientific article, news article, and others.

Prerequisites: -

3 Cr (3,0)

3 Cr (9,0)

ARB100: Arabic

ARB099: Arabic 99

This course aims to improve the student's competence in the various linguistic skills in terms of: reading, comprehension, and taste. This is achieved through the study of selected texts with many implications that raise issues in spelling, grammar, composition, meaning, and inference, and the use of an old and modern thesaurus.

Prerequisites: ARB099

GERL101: German I

Can understand and use familiar, everyday expressions and very simple sentences, which aim at the satisfaction of specific needs. Can introduce oneself, and others, and ask others questions to themselves - e.g. where they live, which people they know or what kind of things they have - and can give answers on questions of this kind. Can communicate on a basic level if those involved with him/ her in a conversation speak slowly and clearly and are willing to help.

Prerequisites: -

3 Cr (9,0)

3 Cr (6,0)

GERL102: German II

Can understand sentences and frequently used expressions if those are connected with things of immediate meaning (e.g. information to the person and to the family, buying, work, closer environment). Can communicate in simple, routine situations, with the purpose of a simple and direct exchange of information about familiar and common things. Can describe with simple means their own origin and training, direct environment and things that are in connection with direct needs.

Prerequisites: GERL101

GERL201: German III

Can understand the main points if no dialect is used and if it concerns familiar things about work, school, spare time etc. Can master most situations which one encounters on journeys in a German speaking area. Can express oneself simply and coherently about familiar topics and areas of personal interest. Can report experiences and events, describe dreams, hopes and goals and give short reasons or explanations about plans and opinions.

Prerequisites: GERL102

GERL202: German IV

GERL301: German V

Can understand the main contents of complex texts, as well as concrete and abstract topics; even discussions between specialists in his/ her own special field. Can communicate spontaneously and fluidly a normal discussion with native speakers, without larger effort on both sides. Can express oneself clearly and in detail in a broad spectrum of topics, describe a point of view to a current question and indicate the pro and cons of different possibilities.

Prerequisites: GERL201

3 Cr (9,0)

3 Cr (3,0)

3 Cr (6,0)

Can understand and also seize implicit meanings of a broad spectrum of demanding, longer texts. Can express oneself spontaneously and fluidly, recognizing words without having to search for words frequently. Can use the language effectively and flexibly in social and vocational life or in training and study. Can express oneself clearly, structured and detailed, to complex subjects and use appropriate different means for linkage of texts.

Prerequisites: GERL202

IC101: Intercultural Communication

This course is designed to provide prospective students (whose majors have an international flavor) with tools that offer powerful possibilities for improving the communication process. We will examine the process of sending and receiving messages between people whose cultural background could lead them to interpret verbal and nonverbal signs differently. We will learn about the diversity of these cultural differences and at the same time learn how we might overcome them. Our efforts to recognize and surmount cultural differences will hopefully open up business opportunities throughout the world and maximize the contribution of all the employees in a diverse workforce.

Prerequisites:-

3 Cr (3,0)

3 Cr (3,0)

MILS100: Military Science

History of the Jordanian Arab Army. United Nations Peace Keeping Forces. Preparation of the nation for defense and liberation. History of the Hashemite Kingdom of Jordan and its development.

Prerequisites:

NE101: National Education

In a context of striving towards democracy like the one Jordan enjoys today, the meaning and practice of active and responsible citizenship becomes more crucial. It is often argued that democracy requires "democrats" to flourish, and become well established. Democrats are those women and men who recognize pluralism, inclusion, positive engagement, and participation as the main values that govern their interaction with the state as citizens and with each other as diverse people of different interests. In this course you will be able to understand your rights and responsibilities as Jordanian citizen expand your knowledge about the frameworks, and processes that regulates citizen-state relationships as well as the basic necessary skills for you to practice your citizenship rights in a civic manner.

Prerequisites:

SE301: Social Entrepreneurship and Enterprises

3 Cr (3,0)

This course will serve as an introduction to the field of social entrepreneurship and social enterprises. Through lectures, field visits, analyses of relevant literature, case studies and exercises, this course will explore social entrepreneurship's potentials, opportunities and limitations. The topics will cover: Defining Social Entrepreneurship. Contextualizing Social Entrepreneurship (need, motives, forms, criteria). Role of Leadership, Creativity and Innovation. Locating SE on the profit/non-profit continuum. SE in the larger fields of development, social change, community activism. Social Enterprises (Missions, Markets, Finances). Ethical business and Corporate social responsibility.

Prerequisites:-