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1. Introduction and Motivation

Last few decades have seen a great deal in the field of orthogonal polynomials
[1, 13, 22, 23]. Although the main definitions and properties were considered
many years ago, the cases of two or more variables of orthogonal polynomials
on triangular domains have been studied by few researchers [2, 5, 20, 21]. Pro-
riol introduced the definition of the bivariate orthogonal polynomials on the
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triangle, and the results were summarized by C.F. Dunkl and T. Koornwinder
[14, 20].

In addition, recent years have seen a great deal in the field of generalized
classical polynomials [3, 4, 8], and their applications [9, 11, 10], the generalized
Chebyshev type polynomials of second type are amongst these polynomials.

For M,N ≥ 0, the generalized Chebyshev-type polynomials of the second

type
{

U
(M,N)
n (x)

}∞

n=0
(generalized Chebyshev-II) were characterized in [8],

these polynomials are orthogonal on the interval [−1, 1] with respect to the
generalized weight function

W(γ,M,N)(x) =
2

π
(1− x)

1
2 (1 + x)

1
2 +Mδ(x + 1) +Nδ(x − 1). (1.1)

A closed form for the matrix transformation of the generalized Chebyshev-II
polynomial basis into Bernstein polynomial basis, and for Bernstein polyno-
mial basis into generalized Chebyshev-II polynomial basis were provided in

[9]. The generalized bivariate Chebyshev-II polynomials U
(γ,M,N)
n,r,d (u, v, w) are

orthogonal to each polynomial of degree ≤ n − 1, with respect to the general-

ized weight function (1.1). However, for r 6= s, d 6= m, U
(γ,M,N)
n,r,d (u, v, w) and

U
(γ,M,N)
n,s,m (u, v, w) are not orthogonal with respect to the weight function.

A construction of bivariate orthogonal polynomials U
(γ)
n,r (u, v, w), r = 0, 1,

. . . , n; n = 0, 1, 2, . . . , with respect to the weight function u
1
2 v

1
2 (1 − w)γ ,

γ > −1, on a triangular domain were introduced in [6]. They showed that

U
(γ)
n,r (u, v, w) form an orthogonal system. A generalization to the results in [6]

were introduced in [7], where for M,N ≥ 0, the generalized bivariate orthog-

onal polynomials U
(γ,M,N)
n,r,d (u, v, w), d = 0, . . . , k; k = 0, . . . , n, r = 0, 1, . . . , n;

n = 0, 1, 2, . . . , with respect to the generalized Chebyshev-II weight function

(1.1) on triangular domain was given. It was show that U
(γ,M,N)
n,r,d (u, v, w) form

an orthogonal system over the domain T with respect to (1.1). For more details
see [2, 6, 7, 12] and references therein.

1.1. Barycentric Coordinates

Consider a triangle T defined by its three vertices pk = (xk, yk), k = 1, 2, 3. For
each point p located inside the triangle, there is a sequence of three numbers
u, v, w ≥ 0 such that p can be written uniquely as a convex combination of
the three vertices, p = up1 + vp2 + wp3, where u + v + w = 1. The three

numbers u =
area(p,p2,p3)
area(p1,p2,p3)

, v =
area(p1,p,p3)
area(p1,p2,p3)

, w =
area(p1,p2,p)
area(p1,p2,p3)

indicate the
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barycentric ”area” coordinates of the point p with respect to the triangle, where
area(p1,p2,p3) 6= 0, which means that p1,p2,p3 are not collinear.

Although there are three coordinates, there are only two degrees of freedom,
since u + v + w = 1. Thus every point is uniquely defined by any two of the
barycentric coordinates. That is, the triangular domain defined as

T = {(u, v, w) : u, v, w ≥ 0, u+ v + w = 1}. (1.2)

1.2. Bernstein Polynomials

We recall a very concise overview of well-known results on Bernstein polynomi-
als, followed by a brief summary of important properties.

Definition 1. The n + 1 Bernstein polynomials Bn
i (x) of degree n, x ∈

[0, 1], i = 0, 1, . . . , n, are defined by:

Bn
i (x) =

n!

i!(n− i)!
xi(1− x)n−i, i = 0, 1, . . . , n. (1.3)

The Bernstein polynomials have been studied thoroughly and there are a
fair amount of literature on these polynomials, they are known for their geo-
metric properties [15, 19], and the Bernstein basis form is known to be opti-
mally stable. They are all non-negative, Bn

k (x) ≥ 0, x ∈ [0, 1], has a single
unique maximum of

(

n
i

)

iin−n(n − i)n−i at x = i
n
, i = 0, . . . , n, their roots

are x = 0, 1 with multiplicities, and they form a partition of unity (normal-
ization), satisfy symmetry relation Bn

k (x) = Bn
n−k(1 − x), and the product of

two Bernstein polynomials is also a Bernstein polynomial which is given by
(

n+m
i+j

)

Bn
i (x)B

m
j (x) =

(

n
i

)(

m
j

)

Bn+m
i+j (x).

The Bernstein polynomials of degree n can be defined by combining two
Bernstein polynomials of degree n − 1, where the kth nth-degree Bernstein
polynomial can be written by the known recurrence relation as Bn

k (x) = (1 −
x)Bn−1

k (x)+xBn−1
k−1 (x), k = 0, . . . , n;n ≥ 1 where B0

0(x) = 0 and Bn
k (x) = 0 for

k < 0 or k > n. Moreover, it is possible to write each Bernstein polynomials of
degree r where r ≤ n in terms of Bernstein polynomials of degree n using the
following degree elevation [18]:

Br
k(x) =

n−r+k
∑

i=k

(

r
k

)(

n−r
i−k

)

(

n
i

) Bn
i (x), k = 0, 1, . . . , r. (1.4)

For ζ = (i, j, k) denote triples of non-negative integers such that |ζ| =
i + j + k, then the generalized Bernstein polynomials of degree n are defined
by the formula Bn

ζ (u, v, w) =
(

n
ζ

)

uivjwk, |ζ| = n, where
(

n
ζ

)

= n!
i!j!k! .
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The generalized Bernstein polynomials have a number of useful analytical
and elegant geometric properties [17]. Note that the generalized Bernstein
polynomials are nonnegative over T and form a partition of unity,

1 = (u+ v + w)n =
∑

0≤i,j,k≤n
i+j+k=n

n!

i!j!k!
uivjwk. (1.5)

These polynomials define the Bernstein basis for the space Πn, the space of all
polynomials of degree at most n. A basis of linearly independent and mutually
orthogonal polynomials in the barycentric coordinates (u, v, w) are constructed
over T. These polynomials are represented in the following triangular table

b0,0
b1,0 b1,1
b2,0 b2,1 b2,2

...
bn,0 bn,1 bn,2 . . . bn,n.

The kth row of this table contains k+1 polynomials. Thus, there are (n+1)(n+2)
2

polynomials in a basis of linearly independent polynomials of total degree n.

Therefore, the sum (1.5) involves a total of (n+1)(n+2)
2 linearly independent

polynomials. Thus, with the revolt of computer graphics, Bernstein polynomials
on [0, 1] became important in the form of Bézier curves, and the polynomials
determined in the Bernstein (Bézier) basis enjoy considerable popularity in
Computer Aided Geometric Design applications.

Degree elevation is a common situation in these applications, where poly-
nomials given in the basis of degree n have to be represented in the basis of
higher degree.

Any polynomial p(u, v, w) of degree n can be written in the Bernstein form
p(u, v, w) =

∑

|ζ|=n dζB
n
ζ (u, v, w), with Bézier coefficients dζ .

With the use of degree elevation algorithm (1.4) for the Bernstein represen-
tation [18], the polynomial p(u, v, w) in (1.4) can be written as

p(u, v, w) =
∑

|ζ|=n+1

d
(1)
ζ Bn+1

ζ (u, v, w).

The new coefficients defined by Hoschek et al. [19] as d
(1)
ζ = 1

n+1(idi−1,j,k +
jdi,j−1,k + kdi,j,k−1) where |ζ| = n+1. Moreover, the next integration is one of
the interesting analytical properties of the Bernstein polynomials Bn

ζ (u, v, w).
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1.3. Integration over Triangular Domains

The integral of a function f(u, v, w) over the triangular domain T defined in
(1.2) can be expressed as

∫∫

T

f(u, v, w)dA = A

∫ v=1

v=0

∫ u=1−v

u=0
f(u, v, 1− v − u)dudv (1.6)

where A is the area of T. We can also formulate (1.6) as a double integral over
v and w or over u and w, by using u+ v + w = 1. However, for integral of the
generalized Bernstein polynomial, we have the following lemma.

Lemma 2. [16] The Bernstein polynomials Bn
ζ (u, v, w), |ζ| = n, on T

satisfy
∫∫

T
Bn

ζ (u, v, w)dA = ∆

(n+2
2 )

, where ∆ is the double the area of T and
(

n+2
2

)

is the dimension of Bernstein polynomials over the triangle.

This means that the Bernstein polynomials partition the unity with equal
integrals over the domain; in other words, they are equally weighted as basis
functions.

2. The Generalized Chebyshev-II Polynomials

For M,N ≥ 0, the generalized Chebyshev-II polynomials
{

U
(M,N)
n (x)

}∞

n=0
are

orthogonal on the interval [−1, 1] with respect to the weight function (1.1)
defined in [20], and been characterized in [8],

U
(M,N)
n (x) =

(2n + 1)!!

2n(n+ 1)!
Un(x) +

n
∑

k=0

λk

(2k + 1)!!

2k(k + 1)!
Uk(x), (2.1)

where

λk =
k(k + 1)(2k + 1)(M +N)

6
+

(k + 2)(k + 1)2k2(k − 1)MN

9
, (2.2)

Un(x) is the Chebyshev-II polynomial of degree n in x, Szegö [23], and the
double factorial of an integer n is given by

(2n − 1)!! = (2n − 1)(2n − 3)(2n − 5) . . . (3)(1) if n is odd

n!! = (n)(n− 2)(n − 4) . . . (4)(2) if n is even,
(2.3)

given that 0!! = (−1)!! = 1.
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The next theorem, see [8] for the proof, provides a closed form for gener-

alized Chebyshev-II polynomial U
(M,N)
r (x) of degree r as a linear combination

of the Bernstein polynomials Br
i (x), i = 0, 1, . . . , r of degree r.

Theorem 3. [8] For M,N ≥ 0, the generalized Chebyshev-II polynomials

U
(M,N)
r (x) of degree r have the following Bernstein representation,

U
(M,N)
r (x) =

(2r + 1)!!

2r(r + 1)!

r
∑

i=0

(−1)r−iϑi,rB
r
i (x)

+
r

∑

k=0

λk

(2k + 1)!!

2k(k + 1)!

k
∑

i=0

(−1)k−iϑi,kB
k
i (x)

where λk defined by (2.2), and

ϑi,r =
(2r + 1)2

22r(2r − 2i+ 1)(2i + 1)

(2r
r

)(2r
2i

)

(

r
i

) , i = 0, 1, . . . , r. (2.4)

Now, we have the following corollary which enables us to write Chebyshev-
II polynomials of degree r where r ≤ n in terms of Bernstein polynomials of
degree n.

Corollary 4. [9] The generalized Chebyshev-II polynomials of degree

less than or equal to n, U
(M,N)
0 (x), . . . ,U

(M,N)
n (x), can be expressed in the

Bernstein basis of fixed degree n by the following formula

U
(M,N)
r (x) =

n
∑

i=0

Nn
r,iB

n
i (x), r = 0, 1, . . . , n,

where

Nn
r,i =

(2r + 1)!!

2r(r + 1)!

min(i,r)
∑

k=max(0,i+r−n)

(−1)r−k(2r + 1)2

22r(2r − 2k + 1)(2k + 1)

(

n−r
i−k

)(2r
r

)(2r
2k

)

(

n
i

)

+
r

∑

k=0

λk

(2k + 1)!!

2k(k + 1)!

min(i,k)
∑

j=max(0,i+k−n)

(−1)k−j(2k + 1)2

22k(2k − 2j + 1)(2j + 1)

(

n−k
i−j

)(2k
k

)(2k
2j

)

(

n
i

) .

2.1. Generalized Bivariate Chebyshev-II Polynomials

In this section, we generalize the construction in [6] to formulate a simple
closed-form representation of degree-ordered system of generalized orthogonal

polynomials U
(γ,M,N)
n,r,d (u, v, w) on a triangular domain T.
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The basic idea in this construction is to make U
(γ,M,N)
n,r,d (u, v, w) coincide

with the univeriate Chebyshev-II polynomial along one edge of T, and to make
its variation along each chord parallel to that edge a scaled version of this

Chebyshev-II polynomial. The variation of U
(γ,M,N)
n,r,d (u, v, w) with w can then

be arranged so as to ensure its orthogonality on T with every polynomial of

degree < n, and with other basis polynomials U
(γ,M,N)
n,s,d (u, v, w) of degree n for

r 6= s, d 6= m.

Now, for M,N ≥ 0, γ > −1, n = 0, 1, 2, . . . , k = 0, . . . , n, r = 0, 1, . . . , n
and d = 0, 1, . . . , k, we define the generalized bivariate polynomials

U
(γ,M,N)
n,r,d (u, v, w) =

r
∑

i=0

(−1)r−iϑi,rB
r
i (u, v)

n−r
∑

j=0

(−1)j
(

n+ r + 1

j

)

Bn−r
j (w, u + v)

+
n
∑

k=0

λk

d
∑

i=0

(−1)d−iϑi,dB
d
i (u, v)

k−d
∑

j=0

(−1)j
(

k + d+ 1

j

)

Bk−d
j (w, u+ v),

(2.5)
where Br

i (u, v) defined in (1.3), λk defined in (2.2), and ϑi,r defined in (2.4).
The Bernstein-Bézier form of curves and surfaces exhibits some interest-

ing geometric properties, see [17, 19]. So, for computational purposes, we are

interested in finding a closed form of the Bernstein coefficients a
n,r,d
ζ , and the

recursion relation that allow us to compute the coefficients efficiently.

We write the orthogonal polynomials U
(γ,M,N)
n,r,d (u, v, w), r = 0, 1, . . . , n, d =

0, . . . , k, and n = 0, 1, 2, . . . in the following Bernstein-Bézier form,

U
(γ,M,N)
n,r,d (u, v, w) =

∑

|ζ|=n

a
n,r,d
ζ Bn

ζ (u, v, w). (2.6)

The following theorem [7] provides a closed explicit form of the Bernstein coef-

ficients an,r,dζ .

Theorem 5. [7] The Bernstein coefficients a
n,r,d
ζ of equation (2.6) are

given explicitly by

a
n,r,d
ijk =

{

(−1)k
(

n+r+1
k

)(

n−r
k

)

Mn−k
i,r + λk(−1)j

(

k+d+1
j

)(

k−d
j

)

M
k−j
i,d if 0 ≤ k ≤ n− r,

0 if k > n− r,

where Mn
i,r defined by

Mn
i,r = Φr

i,n +

r
∑

k=0

λkΦ
k
i,n, (2.7)
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and

Φr
i,n =

(2r + 1)!!

2r(r + 1)!

min(i,r)
∑

k=max(0,i+r−n)

(−1)r−k

(

n−r
i−k

)(r+ 1
2

k

)(r+ 1
2

r−k

)

(

n
i

) .

Proof. From equation (2.5), it is clear that U
(γ,M,N)
n,r,d (u, v, w) has degree

≤ n− r in the variable w, and thus an,rijk = 0 for k > n − r. For 0 ≤ k ≤ n − r,

the remaining coefficients are determined by equating (2.5) and (2.6) as follows

∑

i+j=n−k

a
n,r
ijkB

n
ijk(u, v, w) = (−1)k

(

n+ r + 1

k

)

Bn−r
k (w, u+ v)

×
r

∑

i=0

(−1)r−iϑi,rB
r
i (u, v)

+ λk

k−d
∑

j=0

(−1)j
(

k + d+ 1

j

)

Bk−d
j (w, u + v)

×

d
∑

i=0

(−1)d−iϑi,dB
d
i (u, v),

where γ > −1, Br
i (u, v), i = 0, 1, . . . , r, defined in equation (1.3), and λk defined

in (2.2). Comparing powers of w on both sides, we have

n−k
∑

i=0

a
n,r
ijk

n!

i!j!k!
uivj = (−1)k

(

n+ r + 1

k

)(

n− r

k

)

(u+ v)n−r−k

×

r
∑

i=0

(−1)r−iϑi,rB
r
i (u, v)

+ λk

k−d
∑

j=0

(−1)j
(

k + d+ 1

j

)(

k − d

j

)

(u+ v)k−d−j

×
d

∑

i=0

(−1)d−iϑi,dB
d
i (u, v).

The left hand side of the last equation can be written in the form

n−k
∑

i=0

a
n,r
ijk

n!(n− k)!

i!j!k!(n − k)!
uivj =

n−k
∑

i=0

a
n,r
ijk

n!(n− k)!

i!(n− k − i)!k!(n − k)!
uivj
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=

n−k
∑

i=0

a
n,r
ijk

(

n

k

)

Bn−k
i (u, v).

Now, we have

n−k
∑

i=0

a
n,r
ijk

(

n

k

)

Bn−k
i (u, v) = (−1)k

(

n+ r + 1

k

)(

n− r

k

)

(u+ v)n−r−k

×

r
∑

i=0

(−1)r−iϑi,rB
r
i (u, v)

+ λk

k−d
∑

j=0

(−1)j
(

k + d+ 1

j

)(

k − d

j

)

(u+ v)k−d−j

×
d

∑

i=0

(−1)d−iϑi,dB
d
i (u, v),

With some binomial simplifications, and using Corollary 4, we get

n−k
∑

i=0

a
n,r
ijk

(

n

k

)

Bn−k
i (u, v) = (−1)k

(

n+ r + 1

k

)(

n− r

k

) r
∑

i=0

Mn−k
i,r Bn−k

i (u, v)

+ λk

k−d
∑

j=0

(−1)j
(

k + d+ 1

j

)(

k − d

j

) d
∑

i=0

M
k−j
i,d B

k−j
i (u, v),

whereMn−k
i,r are the coefficients resulting from writing Chebyshev-II polynomial

of degree r in the Bernstein basis of degree n−k, as defined by expression (2.7).
Thus, the required Bernstein-Bézier coefficients are given by

a
n,r,d
ijk =

{

(−1)k
(

n+r+1
k

)(

n−r
k

)

Mn−k
i,r + λk(−1)j

(

k+d+1
j

)(

k−d
j

)

M
k−j
i,d if 0 ≤ k ≤ n− r

0 if k > n− r.

which completes the proof of the theorem.
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3. Cubature Formulas

In this section, we will provide a cubature formula for the generalized Chebyshev
type polynomials of second type that will solve multiple integration problems
numerically. We provide cubature formula to approximate double integrals over
triangular domain.

We defined the polynomial in two variables and the main properties of the
Bernstein polynomial over triangular domains, and introduce some definition
give some cubature formulas of the form I(f) =

∫∫

T
f(U)dA, where U ∈ T, f

is defined on the triangular domain T = {(u, v, w) : v, u,w ≥ 0, u+ v+w = 1}.
For function of one variable, polynomial interpolation and quadrature formula
are closely related.

3.1. Cubature Formula over Triangular Domains

In this section, we study interpolatory cubature formula of the form
∫∫

T

f(U)dA =
∑

|I|=N

CIf(UI), CI ∈ R, (3.1)

we want to choose the appropriate nodes UI , |I| = N and coefficients CI ,

|I| = N.

Let {Bn
ζ (U)}, |ζ| = n be the set of generalized Bernstein polynomials over

the triangular domain T, where ζ = n1+n2+n3 = n, and U be the barycentric
coordinates on the triangular domain T. We can interpolate the function f by
the generalized Bernstein polynomials and use this interpolation formula to
construct a cubature formula as in the following theorem.

Theorem 6. On the triangular domain T, the generalized bivariate Cheby-
shevtype polynomials of the second type have the following interpolatory cu-
bature formula

In(U
(γ,M,N)
n,r,d (U)) =

∆
(

n+2
2

)

∑

|ζ|=n

a
n,r,d
ζ .

Proof. We interpolate U
(γ,M,N)
n,r,d (u, v, w) using generalized Bernstein polyno-

mials as
U
(γ,M,N)
n,r,d (U) =

∑

|ζ|=n

a
n,r,d
ζ Bn

ζ (U). (3.2)

Now, we take the integral to both sides of (3.2) to get
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∫∫

T

U
(γ,M,N)
n,r,d (U)dA =

∫∫

T

∑

|ζ|=n

a
n,r,d
ζ Bn

ζ (U)dA

=
∑

|ζ|=n

a
n,r,d
ζ

∫∫

T

Bn
ζ (U)dA. (3.3)

Thus,
∫∫

T

U
(γ,M,N)
n,r,d (U)dA =

∆
(

n+2
2

)

∑

|ζ|=n

a
n,r,d
ζ = In(U

(γ,M,N)
n,r,d (U)), (3.4)

where ∆ is the double the area of T and
(

n+2
2

)

is the dimension of Bernstein
polynomials over the triangle, which completes the proof of the interpolatory
cubature formula.
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