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Abstract

Orthogonal polynomials have very useful properties in the mathematical problems, so recent years have seen a great
deal in the field of approximation theory using orthogonal polynomials. In this paper, we characterize a sequence

of the generalized Chebyshev-type polynomials of the first kind {%M’N)(x)} N0}’ which are orthogonal with
neNU

respect to the measure 7vl;zzdx 4+ Mé_1 + N§1, where J,, is a singular Dirac measure and M, N > 0. Then we
provide a closed form of the constructed polynomials in term of the Bernstein polynomials B} (x). We conclude
the paper with some results on the integration of the weighted generalized Chebyshev-type with the Bernstein
polynomials.
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1. Introduction

Approximation is essential to many numerical techniques, since it is possible to approximate arbitrary continuous
function by a polynomial, at the same time polynomials can be represented in many different bases such as monomial
and Bernstein basis.

1.1. Univariate Chebyshev polynomials

Chebyshev polynomial of first kind (Chebyshev-1) of degree n > 0 in z is defined as T, (z) = cos(narccosx),

x € [-1,1]. The polynomials T, (z) of degree n are orthogonal polynomials, except for a constant factor, with

respect to the measure W(zx) = \/1177 They are a special case of Jacobi polynomials pid) (x) and the interrelation

is given by

T,(z) = (”‘ 5>_1P£‘5=‘5>(x). (1)

n

It is worth pointing out that univariate classical orthogonal polynomials are traditional defined on [—1,1],
however, it is more convenient to use [0, 1]. For the convenience we recall few representations of univariate Chebyshev-
I polynomials. The univariate Chebyshev-I polynomials of degree n in x can be written as [6, 11],
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To(x) = 2(5")1”,, h—o (”77) ("77) ( 5 )k( ) , which can be transformed in terms of Bernstein basis as
n—%

T.(2z — 1) := 22(7;(:)" S (—1)n ! %Bk( ), « € [0,1], where B}!(x) are the Bernstein polynomials of

degree n, z € [0,1], k € NU {0}, defined by B} (z) = ﬁikﬂxk(l — )"k,

Note that the double factorial of an integer m, m!!, is a generalization of the usual factorial m!, and defined as

L

mll = (m)(m—2)(m—4)...(4)(2) if m is even @)

@Cm—-1)l'=2m—-1)(2m —3)(2m —5)...(3)(1)  if m is odd,
where 0!l = (—1)!! = 1. From the definition (2), we can derive the factorial of an integer minus half as

T M (3)

2 (2r)!!
In addition, the Chebyshev-I polynomials satisfy the orthogonality relation [8]
1 ) 0 ifm#n

/ (z—2*) 2T, (2) T (z)de =< Z ifm=n=0 . (4)

0 7 ifm=neN

2. Generalized Chebyshev-type polynomials

In this section we characterize the generalized Chebyshev-type polynomials of first kind, %(M’N) (x), then we provide

explicit closed form as a linear combination of Bernstein polynomials B} (). We conclude this section with the closed

form of the integration of the weighted generalized Chebyshev-type with respect to the Bernstein polynomials.
Using the fact (1) and similar construction of the results in [5, 7], and for M, N > 0, define the sequence of the

generalized Chebyshev-type polynomials {%M’N)(x)}

neNU{0}

FMN) () = %Tn@) + MQ,(z) + NR,(x) + MNS, (z), n € NU{0} (5)
where for n € N

Que) = o [W1,(0) - Jo — VDL 2)]. ©)
Ra(r) = =M oo oy - Lo 1) p1 ()] (7)

n 22n71(n!)3 I n 2 n ] )
and
Sp(z) = (2n)t (02T, () — DT, (2))]. 8)

22n=2(p1)3(n — 1)!
By using (22 — 1)D?T,,(z) = n?T,(z) — DT, (), we find that

4(2n — )N

) = iz

2 _1)D*T,,(z), n € N. (9)
It is clear that Qo(z) = Ro(z) = So(z) = 0. Furthermore, for n € N U {0} the generalized Chebyshev-type

polynomials satisfy the symmetry relation [7], %M’N)(a:) = (—1)"%N’M)(—m), which implies that Q,(z) =
(=1)"R,(—x) and Sy, (z) = (—=1)"S,(—=z). From (6) and (7) it follows that for n € N

2(2n — 1)!!

2(2n — 1!
(n— D)I2n) | : TR

Qn(l) = m

T,(1) and R,(-1) =
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Note that (6),(7) and (8) imply that for n € N, we have

— (2k)!gy . 4
= ! !
Ry () Zn: CLLT PR p—, 1 (11)
= 1 =
e e ) Ea N PR )R VT
and
"L (2k)!sy, , 4
= ————T h =——. 12
Sn() kZ:OQ?’f(k) k(@) with sk = ) (12)
Therefore, for M, N > 0 the generalized Chebyshev-type polynomials {%M’N)(sc)} N0} are orthogonal on
neNU

the interval [—1, 1] with respect to the measure

‘/1_ 2
VT g+ Mé_y + NGy, (13)
Vs

where 0, is a singular Dirac measure, which can be written as

(2n — = ')\k
FMN) (1) — @T kz oPE T () (14)
=0
where
A = Mgy, + Nry, + M Nsy. (15)

2.1. Characterization using Bernstein basis

The Bernstein polynomials have been studied thoroughly and there exist many great enduring works on theses
polynomials [2]. They are known for their analytic and geometric properties [1, 4], where the basis are known to
be optimally stable. They are all non-negative, B?(z) > 0, z € [0,1], form a partition of unity (normalization)
> h_o Bi(z) = 1, satisfy symmetry relation B}'(z) = Bl_;(1 — z), have a single unique maximum of (7})i'n="(n —
i\)"latx = %, 1 =0,...,n, and their roots are x = 0,1 with multiplicities. The Bernstein polynomials of degree
n can be defined by combining two Bernstein polynomials of degree n — 1. That is, the kth nth-degree Bernstein
polynomial defined by the following recurrence relation B(z) = (1 — 2)By ' (z) + 2B}~ (z), k=0,...,n;n > 1
where Bf(z) =0 and BP(z) =0 for k < 0 or k > n. For more details, see Farouki [2].

In addition, it is possible to write Bernstein polynomial of degree r where r < n in terms of Bernstein polynomials
of degree n using the following degree elevation [3]:

Bj(x) = ”i‘k MB"(QE) k=0,1 T (16)
k — sz (,,;) 7 3 — 3 PRI A

Now, to write a generalized Chebyshev-type polynomial ,%(M’N)(x) of degree r as a linear combination of the
Bernstein polynomial basis Bf (x),i = 0,1,...,r of degree r in explicit closed form, we begin with substituting the
value of Bj}(z) into (14) to get

r r k
TN (@) = B S )t B (@) 4 30 S S (1 B ).

k
(2r)!! —~ = (k!)? =

where 7; , =
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This shows that the generalized Chebyshev-type polynomial ,%(M’N) (z) of degree r can be written in the
Bernstein basis form. Now, by expanding the right-hand side and using (3) with some simplifications, we have

(%)(
(

i— ) (r—

)! (2r — DN(2r — 1!
T T 2rl(2i — DNR(r— i) — DI

L\.’J\)—A

Nir = (

l\')\»—l
l\')\»—l

Using the fact (2n)! = (2n — D)!2"n! we get n;, = (222%), where 19, = 2; (2:). With simple combinatorial

(i~3)
(r—i-‘?—%)ni’T'

simplifications we have n;,_1 , = Thus we have the following theorem.

Theorem 2.1. For M, N > 0, the generalized Chebyshev-type polynomials %M’N) (z) of degree n have the following
Bernstein representation:

n

70 @) = Ol S i, ) + 3 S

" (2n)!! — T (—1)k_j77j,ka($) (17)

2n\ (2n
where A\, = Mqi,+ Nrp+MNsy and n;,, = (2235 )) i=0,1,...,n where g, = Q%H (2:) Moreover, the coefficients

Min Satisfy the recurrence relation

(2n —2i +1)

imin, i=1,...,m. 1
2i—1) Mtm ! n (18)

Nin =

It is worth mentioning that Bernstein polynomials can be differentiated and integrated easily as

%Bk (z) =n[By"{(z) — By (z)],n>1, and /0 Bp(z)dx = ) k=0,1,...,n

Rababah [9] provided some results concerning integrals of univariate Chebyshev-I and Bernstein polynomials.
In the following we consider integration of the weighted generalized Chebyshev-type with Bernstein polynomials,

= 195_% —2)"2B" (M.N) x
1_/0 (1 —2) 2B (2) 7N (2)de.

By using (17), the integral can be simplified to

where Ay defined in (15). By reordering the terms we get

% i — % ! r+k—1 nti—r—k—1
I= 221 2 P O:L' 2(1—2) 2dx

'L /n\ (2d)!A\g g (d—1\[d—1 /1 - 1
_1)d—J 2 2 rHi=3 (1 — )T 2 .
+dyg<r)22d(d!>2 jzo( ) ( j Na—j)Jy o700 v

The integrals in the last equation are the Beta functions B(z;,y;) with 1 = r 4+ k + %, p1=n+i—r—k+ %7
ro=r+j+5,andys=n+d—r—j+3.

Hence, the following theorem provides a closed form of the integration of the weighted generalized Chebyshev-
type with respect to the Bernstein polynomials.
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Theorem 2.2. Let B]'(x) be the Bernstein polynomial of degree n and Z-(M’N) (z) be the generalized Chebyshev-type
polynomial of degree i, then for i,r =0,1,...,n we have

r

+§(Z>m d (_1)d—j(d_.;)(2_§>B(T+j+;,n+d—r—j+;)

Jj=0

/Ol(g; — 2%)" 2B (2) MY (2)da = (”) 252(?,')2 g:(—l)i_k (l ; 5) (". - i B(r+k+ %n ti-r—k+ %)
=0

where A, defined in (15) and B(x,y) is the Beta function.

3. Applications

The analytic and geometric properties of the Bernstein polynomials made them important for the development of
Bézier curves and surfaces in Computer Aided Geometric Design. The Bernstein polynomials are the standard basis
for the Bézier representations of curves and surfaces in Computer Aided Geometric Design. However, the Bernstein
polynomials are not orthogonal and could not be used effectively in the least-squares approximation [10]. So, the
method of least squares approximation accompanied by orthogonal polynomials has been introduced.

Definition 3.1. For a function f(z), continuous on [0, 1] the least square approxzimation requires finding a polyno-
mial (Least-Squares Polynomial) p,(x) = agpo(z) + a1p1(x) + - -+ + anpn(x) that minimize the error

E(ag,a1,...,an) :/0 [f(2) — pn(x)]?d.

For minimization, the partial derivatives must satisfy g—i = 0,7 =0,...,n. These conditions give rise to a system
of (n+ 1) normal equations in (n+ 1) unknowns: ag,as, ..., a,. Solution of these equations will yield the unknowns
of the least-squares polynomial p,(x). By choosing ¢;(x) = %, then the coefficients of the normal equations give
the Hilbert matrix that has round-off error difficulties and notoriously ill-condition for even modest values of n.
However, choosing {¢o(x), p1(x),...,¢on(z)} to be orthogonal simplifies the least-squares approximation problem,
the matrix of the normal equations will be diagonal, which make the numerical calculations more efficient. See [10]
for more details on the least squares approximations.

4. Conclusion

We used the elegant analytic and geometric properties of the Bernstein polynomials to characterize the generalized

Chebyshev-type polynomials of first kind, %(M’N)(:v), and provided explicit closed form as a linear combination

of Bernstein polynomials B (z). We concluded the paper with the closed form of the integration of the weighted
generalized Chebyshev-type with respect to the Bernstein polynomials.
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