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Abstract

We construct Ultraspherical-weighted orthogonal polynomials
%@%”Y) (u,v,w), A > —%, v > —1, on the triangular domain 7', where
2\ + v = 1. We show ‘5,&/\,37)(7;,1),10), r=20,1,...,n; n > 0 form an
orthogonal system over the triangular domain 7" with respect to the
Ultraspherical weight function.
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1 Introduction

Recent years have seen a great deal in the field of orthogonal polynomials,
the Ultraspherical orthogonal polynomials are Amongst these polynomials |1,
2, 10, 13, 20]. Although the main definitions and properties were considered
many years ago, the cases of two or more variables of orthogonal polynomials
on triangular domains have been studied by few researchers [11, 12, 19]. Proriol
[15] introduced the definition of the bivariate orthogonal polynomials on the

triangle, and the results were summarized by C.F. Dunkl and T. Koornwinder
[5, 11].
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Orthogonal polynomials with Ultraspherical weight function W (u, v, w) =

W zr e 2(1—w)?, A > 5, v > —1 on triangular domain 7" are defined in many

articles and textbooks, for instance [3, 10]. These polynomials C’T(l,ﬁ) (u,v,w),

are orthogonal to each polynomial of degree less than or equal to n — 1, with
respect to the defined weight function W (u, v, w) on T. However, for r # s,
C’T(fﬂ) (u,v,w) and C’T(L’,\S’W)(u, v,w) are not orthogonal with respect to the weight
function WA (u, v, w) on T.

S. Waldron start the work of a generalized beta integral and the limit of
the Bernstein-Durrmeyer operator with Jacobi weights. Also, he computed
orthogonal polynomials on a triangle by degree raising. Farouki [7] defined
the orthogonal polynomials with respect to the weight function W(u, v, w) =1
on a triangular domain 7. These polynomials P, ,.(u,v, w) defined in [7], are
orthogonal to each polynomial of degree < n — 1 and also orthogonal to each
polynomial P, (u,v,w), r # s.

In this paper, we construct orthogonal polynomials ‘Kéﬁn’W)(u,v,w), with
respect to the Ultraspherical weight function W) (u, v, w) = u)‘_%v)‘_%(l —
w), A > _71,7 > —1, on triangular domain 7', such that 2\ +~ = 1. These
Ultraspherical-weighted orthogonal polynomials are given in terms of Bernstein
basis, so many geometric properties of the Bernsteln }))olynomlal basis are pre-
serve. We show that these bivariate polynomials %n Y (u,v,w), r=0,1,...,n,
and n =0,1,2,..., form an orthogonal system over the trlangular domain T'
with respect to the weight function W) (u, v, w) = w2 o) (1 —w)’, A >
%1,7 > —1, where 2\ 4+ v = 1.

On the triangular domain 7', we proved that these polynomials %@8}77) (u,v,w) €
Con>1,r=01,...,n and for r £ s, €07 (u,v,w) L €N (u, v, w).

P.K. Suetin [19] constructed bivariate orthogonal polynomials on the square.
He considered the tensor product of the set of orthogonal polynomials over the
domain G = {(z,y) : -1 <z <1,-1 <y <1}

Let {Cr([\l)(q:)}, {an’\Q)(y)} be the Ultraspherical polynomials over [—1,1]
with respect to the weight functions Wi(z) = (1 — 22)*~2, and Wy(y) =
(1 — y?)*~ 2 respectively. P.K. Suetin [19], defined the bivariate polynomials
{Rum(z,y)} on G formed by the tensor products of the Ultraspherical polyno-
mials by

Rom(x,y) == C’,(L/\f,)n(x)Q%\”(y),n =0,1,2,....,m=0,1,...,n

Then {R,.(z,y)} are orthogonal on the square G with respect to the weight
function W(z,y) = Wg’\l)(:ﬁ)WéAQ)(y). However, The construction of orthogo-
nal polynomials over a triangular domain is not straightforward like the tensor
product over the square.
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2 Barycentric, and Bernstein Polynomials

Consider a base triangle in the plane with the vertices p, = (zg, yx), k = 1,2, 3.
Then every point p inside the triangle

T = {(u,v,w) : u,v,w > 0,u+v+w=1},

can be written using the barycentric coordinates (u,v,w), as p=up; + vp, +
wps. The barycentric coordinates are given in the following ratios:

area(p, Py, P3) _ area(py, P, P3) _ area(py, P2, P)

area(py, P2, P3) ’ area(py, Py, P3) 7 area(py, Py, P3) '

where area(py, Py, P3) # 0, which means that p,, py, p; are not collinear.

Let the notation ( = (i, j, k) denote triples of nonnegative integers, where
|C| = i+ j + k. The generalized Bernstein polynomials of degree n on the
triangular domain 7" are defined by the formula

oo |
b (u, v, w) = (Z)u‘vjwk, IC| =n, where (Z) = #

Note that the generalized Bernstein polynomials are nonnegative over T, and
form a partition of unity,

|
l=(u+v+w)" = Z i!Z-k!uivjwk.
0<i,j,k<n
itjt+k=n
These polynomials define the Bernstein basis for the space II,, over the trian-
gular domain 7', where the kth row contains k£ + 1 polynomials. Thus, for a
basis of linearly independent polynomials of total degree n, there are a total
of (1/2)(n + 1)(n + 2) linearly independent polynomials.
Any polynomial p(u, v, w) of degree n can be written in the Bernstein form
as
p(u,v,w) ngbcuvw (1)
I¢l=n
with Bézier coefficients d.. We can also use the degree elevation algorithm for
the Bernstein representation (1). This is obtained by multiplying both sides
by 1 = v+ v + w, and writing

p(u, v, w) Zdb”“uvw)
[{|l=n+1

the new coefficients dél) are defined by, see [6, 9] ,

d(l)

ik = 1 (idi—l,j,k + jdi,j—l,k + kdi7j7k_1), ) +] + kE=n + 1.

n -+
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The Bernstein polynomials b7 (u, v, w), |(| = n, on T satisfy, see [7],

//T b (u, v, w)dA = (n+ 1ﬁn +2)’

where A is double the area of T
Let p(u,v,w) and g(u, v, w) be two bivariate polynomials over T, then we
define their inner product over T' by

D, q A//pqdz‘l

We say that p and ¢ are orthogonal if (p,q) = 0.

For m > 1, we define £, = {p € 1I,, : p L II,,_1} to be the space of
polynomials of degree m that are orthogonal to all polynomials of degree < m
over a triangular domain 7', and II,, is the space of all polynomials of degree
n over the triangular domain 7.

Let f(u,v,w) be an integrable function over 7" and consider the operator

Sulf) = (n+1)(n+2) S (f00) 00
I¢|=n

For n > m,

(n 4+ 2)In!
(n+m+2)/(n—m)!
is an eigenvalue of the operator S, and £, is the corresponding eigenspace,
see [4] for proof and more details. The following lemmas will be needed in the
proof of the main results, see [7, 14] for the proofs and more details.

Lemma 2.1. (See [7]). Letp =} _, ccbf € L and let ¢ =37 _, dcb} €
II,, with m < n. Then,

(p.q) = ) )] > cede.

/\m,n =

(n+m+2)! sl
Lemma 2.2. (See [1]). Let p € 37 ¢, ccb¢ € L. Then,
PEL, & Y cdc=0Vg=> ddb} €T, . (2)
I¢|=n |¢|=n

3 Ultraspherical Polynomials

The Ultraspherical polynomials o (x) of degree n are the orthogonal poly-
nomials, except for a constant factor, on [—1, 1] with respect to the weight
function
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In this paper, it is appropriate to take x € [0, 1] for both Bernstein and Ultra-
spherical polynomials.

The following lemmas, See A. Rababah [17], will be needed in the construc-
tion of the orthogonal bivariate polynomials and the proof of the main results.
For more details and the proofs, see [17]. Although the Pochhammer symbol
is more appropriate, the combinatorial notation will be used, Szeg6 [20], since
it is more compact and readable formulas.

Lemma 3.1. The Ultraspherical polynomials C’T(A)(x) have the Bernstein
representation:
1 1
Y (G (g
C’,(,A)(SU) = (—2n (_1)7"71 i r—i b:(l’); r=0,1,.... (3)
2. 2 0

1=0

Lemma 3.2. The Ultraspherical polynomials C’(()’\)(:c), e s (x) of degree
< n can be expressed in the Bernstein basis of fixed degree n by the following
formula

CMN(z) = Zuzrb?(x), r=0,1,...,n
=0

where

_ min(z,r)
A+2), (n\ ! o=\ [(r+X=3\[r+r-12
no_ > 27 -1 T 2 2
Hir =700, \i 2. )( U k r—k

k=max(0,i+r—n

In addition, the following combinatorial identity, Lemma 3.3 [18], can be
used for the main results simplifications.

Lemma 3.3. For an integer n, we have the following combinatorial identity

o) ==

In the following lemma, let

G (W) = g(—l)j (n et 1) b ().

=0 J

—~
Ot
~—

Lemma 3.4. (See [7]). Forr =0,...,nandi=0,...,n—r —1, g, (w)
is orthogonal to (1 — w)* ™1 on [0,1], and hence, for every polynomial p(w)
of degree <mn —r —1,

/0 QH,r<w)p(w)(1 — w)2’"+1dw =0.
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4 Ultraspherical-Weighted Polynomials

Analogous to [7], a simple closed-form representation of degree-ordered system
of orthogonal polynomials is constructed on a triangular domain 7'. Since the
Bernstein polynomials are stable [8], it is convenient to write these polynomials
in Bernstein form.

Forn=20,1,2,...and r =0, 1,...,n we define the bivariate polynomials

‘575’\7,7)@ v, W) = c(i, A)b; (u, v) E (—1) (n + T + 1) by (w,u +v), (6)
, X J
=0 7=0

where A > —1 4> —1, 2X\+~ =1, b} (u,v) = (})uv"™", i=0,1,...,r, and

i=0,1,...,r (7)

In this section, we show that the polynomials %”m (u v,w) € Ly, T
0,1,...,n;n > 1, and for r # s, €57 L €57, By choosing %0(07) =1, the

polynomlals %g,ﬂ) (u,v,w) for 0 < r < n and n > 0 form a degree-ordered
orthogonal sequence over T
We first rewrite these polynomials in the Ultraspherical polynomials form:

— 1
Céfbﬁ,’”)(u,v,w) = E (i, )b} (u, v) E (n—i—r—i— )b?r(w,u—l—v)
=0

_Z . )\ by ( uv)( w)’"g(—l) (n+§+1)b” Y1 — w),

Since b} (u,v) = (u + v)"bj (), and using Lemma 3.1 we get

A+ 5 a
_ (2)\)n Cﬁ )(

r

U
1—w

(1 —w)'¢ur(w), 7=0,...,n, (8)

where C’T(,A)(t) is the univariate Ultraspherical polynomial of degree r and
qnr(w) is defined in equation (5).

For simplicity, since we are dealing with orthogonality, and the Ultraspher-
ical polynomials C,(z) of degree n are the orthogonal except for a constant
factor, we rewrite (8) as

U
1—w

EO (u,v,w) = CV(

o T (1 —w)"¢ur(w), 7=0,...,n. 9)

First, we show that the polynomials %,E?ﬂ)(u,v,w), r=20,...,n, are or-
thogonal to all polynomials of degree less than n over the triangular domain
T.
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Theorem 4.1. For each n =12,...,7r=0,1,.. n and the weight func-
tion WO (u, v, w) = u~ 20273 (1— w)7 such that A\ > —1 v > =1, 2X+y =1,

(féﬁﬂ) (u,v,w) € £,.

Proof. For each m = 0,...,n—1, and s = 0,...,m we construct the set of
bivariate polynomials

Q((s,)%(%v;w) :C()\) < 4 > (1—w>mwnim71, m:(),...,n—l,s:(),...,m.

s 1—w
(10)
The span of these polynomials includes the set of Bernstein polynomials
bj(l—w)(l_w) w b=, v)w 'm=0,....,n—-1,7=0,...,m,
which span II,,_;. Thus, it is sufficient to show that for each m =0,...,n—1,
s=0,...,m, we have

I:= // ‘5(’\7) (u,v w)Q( ) (1w, v, w) W (u, v, w)dA = 0. (11)

This is simplified to

1 1—w
— WY
0O 0

By making the substitution ¢ = , we get

Y (10) OO (LY== A5 = F (1 )+ Gy,

1—w

(12)

] = //C«()\ an C«()\ ( )( )2)\+7+r+m n—m-— 1t>\—7 (1 . t))\—% dtdw

1
=A / COBCV ()2 (1 — 1) 3 dt / G (W) (1 — w) AT Emyn=m=lgy,.
0 0

If m < r, then we have s < r, and the first integral is zero by the orthogonality
property of the Ultraspherical polynomials. If r < m < n — 1, we have by
Lemma 3.4 the second integral equals zero, Thus the theorem follows. O]

Note that taking WO (u, v, w) = u*~20*~2 (1 —w)? enables us to separate
the integrand in the proof of Theorem 4.1. Also note that taking 2\ +v =1
enables us to use Lemma 3.4 in the proof of Theorem 4.1.

In the following theorem, we show that %, m(u, v, w) is orthogonal to each
polynomial of degree n. And thus the bivariate polynomials %8}’7) (u,v,w), r =
0,1,...,n,and n = 0,1,2,... form an orthogonal system over the triangular
domain 7" with respect to the weight function W) (u, v, w), A > —%, v > —1.
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Theorem 4.2. For r # s, we have Cx" (u,v,w) L €% (u,v,w) with
respect to the weight function WO (u, v, w) = u)‘_%v’\_%(l — w)7 such that
A > —%,fy > —1.

Proof. For r # s, we have

I —/ (5’\7 (u,v w)%&’\s’”)(u,v,w)W(”\’V)(u,U,w)dA

= A/ / C(A) C’(A)( 1 )(1=w0)" " gy (W) @, (W)W (10, 0, w) dudw.
—w
By making the substitution ¢ = , we have
1 1
I= A/Cﬁ”(t)Cﬁ”(t)tA_% (1—1) dt/qn,r(w)qn,s(w)(l — w) T,
0 0

the first integral equals zero by orthogonality property of the Ultraspherical
polynomials for r # s, and thus the theorem follows. O

5 Ultraspherical in Bernstein Basis

The Bernstein-Bézier form of curves and surfaces exhibits some interesting
geometric properties, see [6, 9]. So, we write the orthogonal polynomials

%q(,,)}”) (u,v,w), m=0,1,...,nand n = 0,1,2,... in the following Bernstein-
Bézier form:
Cégf;:” (u,v,w) = Z al" b (u, v, w). (13)
I¢l=n

We are interested in finding a closed form for the computation of the Bern-
stein coefficients a/". These are given explicitly in the following theorem:

Theorem 5.1. The Bernstein coefficients a?’T of equation (13) are given
explicitly by

() (14)

{ (_1)kmulrk O<k<n_7ﬂ
k>n—r

where " are given in (4).
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Proof. From equation (6), it is clear that el (u,v,w) has degree < n —r in
the variable w, and thus

aigp =0 fork>n-—r. (15)

For 0 < k < n — r, the remaining coefficients are determined by equating (6)
and (13) as follows

1 T
S i) = U (" o) i ).

i+j=n—k i=0

Comparing powers of w on both sides, we have

S nr n! iJ k n+r+1 n—r n—r—k - L, A)b!
;aijki!j!k!UU —(—1) L e (u+v) ;c(% )i(uﬂf)-

The left hand side of the last equation can be written in the form

n—k

o nl(n — k)! B ik
Zoaijki!(n—k—i)!k!(n = Z%’f( )b (u,v)

i=

Now, we get

Z%k( )b” F(u,v) = (_1)k(” +}: * 1) (" . T) (o)™ k ic(i, M (u, 0).

i=0
With some binomial simplifications, and using Lemma 3.2, we get

n—k

St ()t = Cor (") (M) o,

1= =0

where uz;k are the coefficients resulting from writing Ultraspherical polyno-
mial of degree r in the Bernstein basis of degree n — k, as defined by expression
(4). Thus, the required Bernstein-Bézier coefficients are given by:

(2)

ijk

nr (—1)k—(n+’:+1><n <) u”k 0<k<n-—r
k>n-—r
n

To derive a recurrence relation for the coefficients aZ,: of Cféf\ﬂ)(u,v,w),
consider the generalized Bernstein polynomial of degree n — 1,

(n—1)!
ilj k!

(t+1) ,
= 1k (u,v,w) +

bt (u, v, w) =

ik v wF (u+ v+ w)

U+1),, (
i1k

(k+1)

7

7U7w)+T z]k+1(u v UJ)
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by construction of Cféf\r’a’)(u,v,w), we have (b%;l(u,v,w),%gﬁﬂ) (u,v,w)) = 0,

t+7+k=n—1, and thus by Lemma 2.2, we obtain
(i + 1)a?f1,j,k +(J+ 1”2}11,1@ + (k + 1)“?,}71@“ = 0. (17)
But, form Theorem 5.1, we have
Ui = My fori=0,1,...,n; (18)
we can use (17) to generate a;’;, recursively on k.
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