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Abstract: We characterize the generalized Chebyshev polynomials of the second kind (Chebyshev-II), and then we

provide a closed form of the generalized Chebyshev-II polynomials using the Bernstein basis. These polynomials can

be used to describe the approximation of continuous functions by Chebyshev interpolation and Chebyshev series and

how to efficiently compute such approximations. We conclude the paper with some results concerning integrals of the

generalized Chebyshev-II and Bernstein polynomials.
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1. Introduction, background and motivation

Orthogonal polynomials are very important and serve to approximate other functions, where the most com-

monly used orthogonal polynomials are the classical orthogonal polynomials. The field of classical orthogonal

polynomials developed in the late 19th century from a study of continued fractions by P.L. Chebyshev.

We have seen the significance of orthogonal polynomials, particularly in the solution of systems of linear

equations and in the least-squares approximations. Meanwhile, polynomials can be represented in many different

bases, such as the monomial powers, Chebyshev, Bernstein, and Hermite basis forms. Every form of polynomial

basis has its advantages, and sometimes disadvantages. Many problems can be solved and many difficulties can

be removed by suitable choice of basis.

In this paper we characterize the generalized Chebyshev polynomials of the second kind (Chebyshev-II)

U
(M,N)
r (x). These polynomials can be used to describe the approximation of continuous functions by Chebyshev

interpolation and Chebyshev series and how to compute efficiently such approximations.

1.1. Bernstein polynomials

We recall a very concise overview of well-known results on Bernstein polynomials, followed by a brief summary

of important properties.

Definition 1.1 The n+1 Bernstein polynomials Bn
k (x) of degree n, x ∈ [0, 1], k = 0, 1, . . . , n, are defined by:

Bn
k (x) =

{ (
n
k

)
xk(1− x)n−k k = 0, 1, . . . , n

0 else
, (1.1)
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with the binomial coefficients (
n

k

)
=

n!

k!(n− k)!
, k = 0, . . . , n.

The Bernstein polynomials have been studied thoroughly and there is a fair amount of literature on

these polynomials. They are known for their geometric properties [2, 5], and the Bernstein basis form is

known to be optimally stable. They are all nonnegative, Bn
k (x) ≥ 0, x ∈ [0, 1], satisfy the symmetry relation

Bn
k (x) = Bn

n−k(1 − x), and the product of two Bernstein polynomials is also a Bernstein polynomial, which is

given by

Bn
i (x)B

m
j (x) =

(
n
i

)(
m
j

)(
n+m
i+j

) Bn+m
i+j (x).

The Bernstein polynomials of degree n can be defined by combining two Bernstein polynomials of degree

n− 1, where the k th nth-degree Bernstein polynomial can be written by the known recurrence relation as

Bn
k (x) = (1− x)Bn−1

k (x) + xBn−1
k−1 (x), k = 0, . . . , n;n ≥ 1,

where B0
0(x) = 0 and Bn

k (x) = 0 for k < 0 or k > n. Moreover, it is possible to write each Bernstein polynomial

of degree r where r ≤ n in terms of Bernstein polynomials of degree n using the following degree elevation [3]:

Br
k(x) =

n−r+k∑
i=k

(
r
k

)(
n−r
i−k

)(
n
i

) Bn
i (x), k = 0, 1, . . . , r. (1.2)

In addition, the Bernstein polynomials can be differentiated and integrated easily as

d

dx
Bn

k (x) = n[Bn−1
k−1 (x)−Bn−1

k (x)], n ≥ 1,

and ∫ 1

0

Bn
k (x)dx =

1

n+ 1
, k = 0, 1, . . . , n. (1.3)

These analytic and geometric properties of Bernstein polynomials with the advent of computer graphics

made Bernstein polynomials important in the form of Bézier curves and Bézier surfaces in computer-aided

geometric design (CAGD). The Bernstein polynomials are the standard basis for the Bézier representations of

curves and surfaces in CAGD.

However, the Bernstein polynomials are not orthogonal and could not be used effectively in least-squares

approximation [10]. Since then a theory of approximation has been developed and many approximation methods

have been introduced and analyzed. The method of least-squares approximation accompanied by orthogonal

polynomials is one of these approximation methods.

1.2. Least-square approximation

The idea of least squares can be applied to approximating a given function by a weighted sum of other functions.

The best approximation can be defined as that which minimizes the difference between the original function

and the approximation; for a least-squares approach, the quality of the approximation is measured in terms
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of the squared differences between the two. The following will briefly refresh our background information to

enable us to combine the superior least-square performance of the generalized Chebyshev-II polynomials with

the geometric insight of the Bernstein form.

Definition 1.2 For a continuous function f(x) on [0, 1] the least square approximation requires finding a

polynomial (least-squares polynomial)

pn(x) = a0φ0(x) + a1φ1(x) + · · ·+ anφn(x)

that minimizes the error

E(a0, a1, . . . , an) =

∫ 1

0

[f(x)− pn(x)]
2dx.

For minimization, the partial derivatives must satisfy

∂E

∂ai
= 0, i = 0, . . . , n.

These conditions will give rise to a system of n+1 normal equations in n+1 unknowns: a0, a1, . . . , an. Solution

of these equations will yield the unknowns: a0, a1, . . . , an of the least-squares polynomial pn(x). It is important

to choose a suitable basis, for example by choosing φi(x) = xi, the matrix coefficients of the normal equations

given as

(Hn+1(0, 1))i,k =

∫ 1

0

xi+1dx, 0 ≤ i, k ≤ n,

which is the Hilbert matrix that has round-off error difficulties and is notoriously ill-conditioned for even modest

values of n.

However, the computations can be made efficient by using orthogonal polynomials. Choosing

{φ0(x), φ1(x), . . . , φn(x)} to be orthogonal simplifies the least-squares approximation procedures. The ma-

trix of the normal equations will be diagonal, which simplifies calculations and gives a compact closed form for

ai, i = 0, 1, . . . , n.

Moreover, knowing pn(x) will be sufficient to compute an+1 to get pn+1(x). See [10] for more details on

the least-squares approximations.

1.3. Factorial minus half

We present some results concerning factorials, double factorials, and some combinatorial identities. The double

factorial of an integer n is given by

(2n− 1)!! = (2n− 1)(2n− 3)(2n− 5) . . . (3)(1) if n is odd

n!! = (n)(n− 2)(n− 4) . . . (4)(2) if n is even,
(1.4)

where 0!! = (−1)!! = 1.

From (1.4), we can derive the following relation for factorials:

n!! =

{
2

n
2 (n2 )! if n is even

n!

2
n−1
2 (n−1

2 )!
if n is odd . (1.5)
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From (1.5) we obtain

(2n)!! = [2(n)][2(n− 1)] . . . [2.1] = 2nn!, (1.6)

and
(2n)! = [(2n− 1)(2n− 3) . . . (1)] ([2(n)][2(n− 1)][2(n− 2)] . . . [2(1)]) = (2n− 1)!!2nn!. (1.7)

By combining (1.6) and (1.7), we get

(
2n

n

)
=

22n(2n− 1)!!

(2n)!!
. (1.8)

In addition, using (1.7) and with some simplifications, we obtain

(
2n
2k

)(
n
k

) =
(2n− 1)!!

(2k − 1)!!(2n− 2k − 1)!!
. (1.9)

1.4. Univariate Chebyshev-II polynomials

Let us first consider a definition and some properties of the univariate Chebyshev polynomials of the second

kind.

Definition 1.3 ( Chebyshev polynomials of the second kind Un(x)). The Chebyshev polynomial of the second

kind of order n is defined as follows:

Un(x) =
sin[(n+ 1) cos−1(x)]

sin[cos−1(x)]
, x ∈ [−1, 1], n = 0, 1, 2, . . . . (1.10)

From this definition, the following property is evident:

Un(x) =
sin(n+ 1)θ

sinθ
, x = cos θ. (1.11)

The Chebyshev polynomials are special cases of Jacobi polynomials P
(α,β)
n (x), and related as

Un(x) = (n+ 1)

(
n+ 1

2

n

)−1

P
( 1
2 ,

1
2 )

n (x). (1.12)

Authors are not uniform in orthogonal polynomials notations, and for convenience we recall the following

explicit expressions for univariate Chebyshev-II polynomials of degree n in x (see Szegö [11]):

Un(x) :=
(n+ 1)(2n)!!

(2n+ 1)!!

n∑
k=0

(
n+ 1

2

n− k

)(
n+ 1

2

k

)(
x+ 1

2

)n−k (
x− 1

2

)k

, (1.13)

which can be transformed in terms of Bernstein basis on x ∈ [0, 1],

Un(2x− 1) :=
(n+ 1)(2n)!!

(2n+ 1)!!

n∑
k=0

(−1)n+1

(n+ 1
2

k

)(n+ 1
2

n−k

)(
n
k

) Bn
k (x). (1.14)
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It may also be represented in terms of Gaussian hypergeometric series as follows [8]:

Un(x) := (n+ 1)2F1

(
−n, n+ 2

3
2

;
1− x

2

)
. (1.15)

Although the Pochhammer symbol is more appropriate, the combinatorial notation gives more compact and

clear formulas, and these have also been used by Szegö [11].

1.4.1. Properties of the Chebyshev-II polynomials Un(x)

The Chebyshev-II polynomials Un(x) of degree n are orthogonal polynomials, except for a constant factor,

with respect to the weight function

W(x) =
√
1− x2.

In addition, Chebyshev-II polynomials satisfy the orthogonality relation [4]

∫ 1

0

x
1
2 (1− x)

1
2Un(x)Um(x)dx =

{
0 if m ̸= n
π
8 if m = n

. (1.16)

The univariate classical orthogonal polynomials are traditionally defined on [−1, 1]; however, it is more conve-

nient to use [0, 1].

2. Main results

In this section, we characterize the generalized Chebyshev-II polynomials U
(M,N)
n (x), and then we write them

using Bernstein basis. Finally, we conclude the section with the explicit formula for the generalized Chebyshev-II

polynomials using Bernstein basis.

2.1. Characterization

Using relation (1.12) and a construction similar to [6, 7] for M,N ≥ 0, the generalized Chebyshev-II polynomials{
U

(M,N)
n (x)

}∞

n=0
can be written as

U (M,N)
n (x) =

(2n+ 1)!!

2n(n+ 1)!
Un(x) +MQn(x) +NRn(x) +MNSn(x), n = 0, 1, 2, . . . (2.1)

where for n = 1, 2, 3, . . .

Qn(x) =
(2n+ 1)!!

3.2nn!

[
n(n+ 2)Un(x)−

3

2
(x− 1)DUn(x)

]
, (2.2)

Rn(x) =
(2n+ 1)!!

3.2nn!

[
n(n+ 2)Un(x)−

3

2
(x+ 1)DUn(x)

]
, (2.3)

and

Sn(x) =
(n+ 2)!(2n+ 1)!!

32.2nn!(n− 1)!
[n(n+ 2)Un(x)− 3xDUn(x)]. (2.4)
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If we use

(x2 − 1)D2Un(x) = n(n+ 2)Un(x)− 3xDUn(x), n = 0, 1, 2, 3, . . . (2.5)

we easily find from (2.4) that

Sn(x) =
(n+ 2)!(2n+ 1)!!

32.2nn!(n− 1)!
(x2 − 1)D2Un(x), n = 1, 2, 3, . . . . (2.6)

It is clear that Q0(x) = R0(x) = S0(x) = 0.

We know that the generalized Chebyshev-II polynomials satisfy the symmetry relation [7],

U (M,N)
n (x) = (−1)nU (N,M)

n (−x), n = 0, 1, 2, . . . (2.7)

which implies that Qn(x) = (−1)nRn(−x), Sn(x) = (−1)nSn(−x) for n = 0, 1, . . . .

From (2.2) and (2.3) it follows that

Qn(1) =
(n+ 2)(2n+ 1)!!

3.2n(n− 1)!
Un(1), n = 1, 2, 3, . . . (2.8)

Rn(−1) =
(n+ 2)(2n+ 1)!!

3.2n(n− 1)!
Un(−1), n = 1, 2, 3, . . . (2.9)

Note that the representations (2.2) and (2.3) imply that for n = 1, 2, 3, . . . , we have

Qn(x) =

n∑
k=0

qk
(2k + 1)!!

2k(k + 1)!
Uk(x) with qn =

n(n+ 1)(2n+ 1)

6
(2.10)

and

Rn(x) =
n∑

k=0

rk
(2k + 1)!!

2k(k + 1)!
Uk(x) with rn =

n(n+ 1)(2n+ 1)

6
. (2.11)

We also can find from (2.4) that for n = 1, 2, 3, . . . , we have

Sn(x) =

n∑
k=0

sk
(2k + 1)!!

2k(k + 1)!
Uk(x) with sn =

(n+ 2)(n+ 1)2n2(n− 1)

9
. (2.12)

Therefore, for M,N ≥ 0, the generalized Chebyshev-II polynomials
{

U
(M,N)
n (x)

}∞

n=0
are orthogonal on

the interval [−1, 1] with respect to the weight function

2

π
(1− x)

1
2 (1 + x)

1
2 +Mδ(x+ 1) +Nδ(x− 1) (2.13)

and can be written as

U (M,N)
n (x) =

(2n+ 1)!!

2n(n+ 1)!
Un(x) +

n∑
k=0

λk
(2k + 1)!!

2k(k + 1)!
Uk(x), (2.14)

where
λk = Mqk +Nrk +MNsk. (2.15)
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The next theorem provides a closed form for generalized Chebyshev-II polynomial U
(M,N)
r (x) of degree r

as a linear combination of the Bernstein polynomials Br
i (x), i = 0, 1, . . . , r of degree r. Those results generalize

the contributions of Rababah [9] to the univariate Chebyshev polynomials of the second kind.

Theorem 2.1 For M,N ≥ 0, the generalized Chebyshev-II polynomials U
(M,N)
r (x) of degree r have the

following Bernstein representation:

U (M,N)
r (x) =

(2r + 1)!!

2r(r + 1)!

r∑
i=0

(−1)r−iϑi,rB
r
i (x) +

r∑
k=0

λk
(2k + 1)!!

2k(k + 1)!

k∑
i=0

(−1)k−iϑi,kB
k
i (x) (2.16)

where λk = Mqk +Nrk +MNsk and

ϑi,r =
(2r + 1)2

22r(2r − 2i+ 1)(2i+ 1)

(
2r
r

)(
2r
2i

)(
r
i

) , i = 0, 1, . . . , r,

where

ϑ0,r =
(2r + 1)

22r

(
2r

r

)
.

The coefficients ϑi,r satisfy the recurrence relation

ϑi,r =
(2r − 2i+ 3)

(2i+ 1)
ϑi−1,r, i = 1, . . . , r. (2.17)

Proof To write a generalized Chebyshev-II polynomial U
(M,N)
r (x) of degree r as a linear combination of the

Bernstein polynomial basis Br
i (x), i = 0, 1, . . . , r of degree r in explicit form, we begin by substituting (1.1)

into (2.14) to get

U (M,N)
r (x) =

(2r + 1)!!

2r(r + 1)!

r∑
i=0

(r+ 1
2

r−i

)(r+ 1
2

i

)(
r

r−i

) Br
r−i(x) +

r∑
k=0

λk
(2k + 1)!!

2k(k + 1)!

k∑
j=0

(k+ 1
2

k−j

)(k+ 1
2

j

)(
k

k−j

) Bk
k−j(x)

=
(2r + 1)!!

2r(r + 1)!

r∑
i=0

(−1)r−iϑi,rB
r
i (x) +

r∑
k=0

λk
(2k + 1)!!

2k(k + 1)!

k∑
j=0

(−1)k−jϑj,kB
k
j (x),

(2.18)

where

ϑi,r =

(r+ 1
2

i

)(r+ 1
2

r−i

)(
r
i

) , i = 0, 1, . . . , r. (2.19)

Using (2.19) and applying
(
n+ 1

2

)
! =

√
π

2n+1 (2n+ 1)!! with some simplifications, we have(
r + 1

2

i

)(
r + 1

2

r − i

)
=

(2r + 1)
(
r − 1

2

)
!

(2r − 2i+ 1)(r − i)!(i− 1
2 )!

(2r + 1)
(
r − 1

2

)
!

(2i+ 1)i!(r − i− 1
2 )!

=
2i(2r + 1)(r − 1)!!

2r(2r − 2i+ 1)(r − i)!(i− 1)!!

2r−i(2r + 1)(2r − 1)!!

2ri!(2i+ 1)(2r − 2i− 1)!!

=
(2r + 1)

2r(2r − 2i+ 1)(r − i)!i!

(2r − 1)!!

(2i− 1)!!

(2r + 1)

(2i+ 1)

(2r − 1)!!

(2(r − i)− 1)!!
.
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Using the fact (2n)! = (2n− 1)!!2nn! , we get

(
r + 1

2

r − i

)(
r + 1

2

i

)
=

(2r + 1)2

22r(2r − 2i+ 1)(2i+ 1)

(
2r

r

)(
2r

2i

)
.

For the recurrence relation, it is clear that for i = 1, . . . , r we have

ϑi−1,r =
(i+ 1

2 )
(r+ 1

2
i

)(r+ 1
2

r−i

)
(r − i+ 3

2 )
(
r
i

) .

Thus,

ϑi−1,r =
(2i+ 1)(2r + 1)2

(
2r
r

)(
2r
2i

)
22r(2r − 2i+ 1)(2i+ 1)(2r − 2i+ 3)

(
r
i

) , i = 1, . . . , r. (2.20)

2

We conclude with an interesting integration property of the weighted generalized Chebyshev-II polyno-

mials with the Bernstein polynomials. To do this, we introduce the following definition.

Definition 2.1 The Eulerian integral of the first kind is a function of two complex variables defined by

B(x, y) =

∫ 1

0

ux−1(1− u)y−1du, ℜ(x),ℜ(y) > 0.

Note that the Eulerian integral of the first kind is often called the beta integral. We observe that the beta

integral is symmetric; a change of variables by t = 1− u clearly illustrates this.

Theorem 2.2 Let Bn
r (x) be the Bernstein polynomial of degree n and U

(M,N)
i (x) be the generalized Chebyshev-

II polynomial of degree i; then for i, r = 0, 1, . . . , n , we have

∫ 1

0

x
1
2 (1− x)

1
2Bn

r (x)U
(M,N)
i (x)dx

=

(
n

r

)
(2i+ 1)!!

2i(i+ 1)!

i∑
k=0

(−1)i−k

(
i+ 1

2

k

)(
i+ 1

2

i− k

)
B(r + k +

3

2
, n+ i− r − k +

3

2
)

+

i∑
d=0

λd

(
n

r

)
(2d+ 1)!!

2d(d+ 1)!

d∑
j=0

(−1)d−j

(
d+ 1

2

j

)(
d+ 1

2

d− j

)
B(r + j +

3

2
, n+ d− r − j +

3

2
)

(2.21)

where B(x, y) is the beta function.

Proof By using (2.16), the integral

I =

∫ 1

0

x
1
2 (1− x)

1
2Bn

r (x)U
(M,N)
i (x)dx
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can be simplified to

I =
(2i+ 1)!!

2i(i+ 1)!

∫ 1

0

xr+ 1
2 (1− x)n−r+ 1

2

(
n

r

) i∑
k=0

(−1)i−k

(i+ 1
2

k

)(i+ 1
2

i−k

)(
i
k

) Bi
k(x)

+

i∑
d=0

λd
(2d+ 1)!!

2d(d+ 1)!

∫ 1

0

xr+ 1
2 (1− x)n−r+ 1

2

(
n

r

) d∑
j=0

(−1)d−j

(d+ 1
2

j

)(d+ 1
2

d−j

)(
d
j

) Bd
j (x)dx

=
(2i+ 1)!!

2i(i+ 1)!

(
n

r

) i∑
k=0

(−1)i−k

(
i+ 1

2

k

)(
i+ 1

2

i− k

)∫ 1

0

xr+k+ 1
2 (1− x)n+i−r−k+ 1

2 dx

+

i∑
d=0

λd
(2d+ 1)!!

2d(d+ 1)!

(
n

r

) d∑
j=0

(−1)d−j

(
d+ 1

2

j

)(
d+ 1

2

d− j

)∫ 1

0

xr+j+ 1
2 (1− x)n+d−r−j+ 1

2 dx.

(2.22)

The integrals in the last equation are the Eulerian integral of the first kind and can be written in term of the

beta function as B(xi, yi) with x1 = r+k+ 3
2 , y1 = n+i−r−k+ 3

2 , x2 = r+j+ 3
2 , and y2 = n+d−r−j+ 3

2 . 2
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